ﻻ يوجد ملخص باللغة العربية
The increased uptake of electric vehicles (EVs) leads to increased demand for electricity, and sometime pressure to power grids. Uncoordinated charging of EVs may result in putting pressure on distribution networks, and often some form of optimisation is required in the charging process. Optimal coordinated charging is a multi-objective optimisation problem in nature, with objective functions such as minimum price charging and minimum disruptions to the grid. In this manuscript, we propose a general multi-objective EV charging/discharging schedule (MOEVCS) framework, where the time of use (TOU) tariff is designed according to the load request at each time stamp. To obtain the optimal scheduling scheme and balance the competing benefits from different stakeholders, such as EV owners, EV charging stations (EVCS), and the grid operator, we design three conflicting objective functions including EV owner cost, EVCS profit, and the network impact. Moreover, we create four application scenarios with different charging request distributions over the investigated periods. We use a constraint multi-objective evolutionary algorithm (MOEA) to solve the problem. Our results demonstrate the effectiveness of MOEVCS in making a balance between three conflicting objectives.
We describe the architecture and algorithms of the Adaptive Charging Network (ACN), which was first deployed on the Caltech campus in early 2016 and is currently operating at over 100 other sites in the United States. The architecture enables real-ti
Lithium-ion battery packs are usually composed of hundreds of cells arranged in series and parallel connections. The proper functioning of these complex devices requires suitable Battery Management Systems (BMSs). Advanced BMSs rely on mathematical m
Even with state-of-the-art defense mechanisms, cyberattacks in the electric power distribution sector are commonplace. Particularly alarming are load-altering (demand-side) cyberattacks launched through high-wattage assets, which are not continuously
Electric vehicles (EVs) have been growing rapidly in popularity in recent years and have become a future trend. It is an important aspect of user experience to know the Remaining Charging Time (RCT) of an EV with confidence. However, it is difficult
The number of electric vehicles (EVs) is expected to increase. As a consequence, more EVs will need charging, potentially causing not only congestion at charging stations, but also in the distribution grid. Our goal is to illustrate how this gives ri