ﻻ يوجد ملخص باللغة العربية
Two indicators of finite-temperature topological properties based on the Uhlmann connection, one generalizing the Wilson loop to the Uhlmann-Wilson loop and the other generalizing the Berry phase to the Uhlmann phase, are constructed explicitly for a time-reversal invariant topological insulators with a $Z_2$ index. While the phases of the eigenvalues of the Wilson loop reflect the $Z_2$ index of the model at zero temperature, it is found that the signature from the Uhlmann-Wilson loop gradually fades away as temperature increases. On the other hand, the Berry phase exhibits quantization due to the underlying holonomy group. The Uhlmann phase retains the quantization at finite temperatures and serves as an indicator of topological properties. A phase diagram showing where jumps of the Uhlmann phase can be found is presented. By modifying the model to allow higher winding numbers, finite-temperature topological regimes sandwiched between trivial regimes at high and low temperatures may emerge.
We develop a systematic approach for constructing symmetry-based indicators of a topological classification for superconducting systems. The topological invariants constructed in this work form a complete set of symmetry-based indicators that can be
We study finite temperature topological phase transitions of the Kitaevs spin honeycomb model in the vortex-free sector with the use of the recently introduced mean Uhlmann curvature. We employ an appropriate Fermionisation procedure to study the sys
The phonon-assisted sticking rate of slow moving atoms impinging on an elastic membrane at nonzero temperature is studied analytically using a model with linear atom-phonon interactions, valid in the weak coupling regime. A perturbative expansion of
We calculate exactly the von Neumann and topological entropies of the toric code as a function of system size and temperature. We do so for systems with infinite energy scale separation between magnetic and electric excitations, so that the magnetic
Various exotic topological phases of Floquet systems have been shown to arise from crystalline symmetries. Yet, a general theory for Floquet topology that is applicable to all crystalline symmetry groups is still in need. In this work, we propose suc