ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards A Systematic Discussion of Missingness in Visual Analytics

69   0   0.0 ( 0 )
 نشر من قبل Maoyuan Sun
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Data-driven decision making has been a common task in todays big data era, from simple choices such as finding a fast way for driving to work, to complex decisions on cancer treatment in healthcare, often supported by visual analytics. For various reasons (e.g., an ill-defined problem space, network failures or bias), visual analytics for sensemaking of data involves missingness (e.g., missing data and incomplete analysis), which can impact human decisions. For example, data, with missing records, can cost a business millions of dollars, and failing to recognize key evidence can put an innocent person into a sentence to death as a falsely convicted of murder. Being aware of missingness is critical to avoid such catastrophes. To achieve this, as an initial step, we present a framework of categorizing missingness in visual analytics from two perspectives: data-centric and human-centric. The former emphasizes missingness in three data-related categories: data composition, data relationship and data usage. The latter focuses on the human-perceived missingness at three levels: observed missingness, inferred missingness and ignored missingness. Based on the framework, we discuss possible roles of visualizations for handling missingness, and conclude our discussion with future research opportunities.



قيم البحث

اقرأ أيضاً

Bus routes are typically updated every 3-5 years to meet constantly changing travel demands. However, identifying deficient bus routes and finding their optimal replacements remain challenging due to the difficulties in analyzing a complex bus networ k and the large solution space comprising alternative routes. Most of the automated approaches cannot produce satisfactory results in real-world settings without laborious inspection and evaluation of the candidates. The limitations observed in these approaches motivate us to collaborate with domain experts and propose a visual analytics solution for the performance analysis and incremental planning of bus routes based on an existing bus network. Developing such a solution involves three major challenges, namely, a) the in-depth analysis of complex bus route networks, b) the interactive generation of improved route candidates, and c) the effective evaluation of alternative bus routes. For challenge a, we employ an overview-to-detail approach by dividing the analysis of a complex bus network into three levels to facilitate the efficient identification of deficient routes. For challenge b, we improve a route generation model and interpret the performance of the generation with tailored visualizations. For challenge c, we incorporate a conflict resolution strategy in the progressive decision-making process to assist users in evaluating the alternative routes and finding the most optimal one. The proposed system is evaluated with two usage scenarios based on real-world data and received positive feedback from the experts.
Visual analytics for machine learning has recently evolved as one of the most exciting areas in the field of visualization. To better identify which research topics are promising and to learn how to apply relevant techniques in visual analytics, we s ystematically review 259 papers published in the last ten years together with representative works before 2010. We build a taxonomy, which includes three first-level categories: techniques before model building, techniques during model building, and techniques after model building. Each category is further characterized by representative analysis tasks, and each task is exemplified by a set of recent influential works. We also discuss and highlight research challenges and promising potential future research opportunities useful for visual analytics researchers.
Financial regulatory agencies are struggling to manage the systemic risks attributed to negative economic shocks. Preventive interventions are prominent to eliminate the risks and help to build a more resilient financial system. Although tremendous e fforts have been made to measure multi-risk severity levels, understand the contagion behaviors and other risk management problems, there still lacks a theoretical framework revealing what and how regulatory intervention measurements can mitigate systemic risk. Here we demonstrate regshock, a practical visual analytical approach to support the exploration and evaluation of financial regulation measurements. We propose risk-island, an unprecedented risk-centered visualization algorithm to help uncover the risk patterns while preserving the topology of financial networks. We further propose regshock, a novel visual exploration and assessment approach based on the simulation-intervention-evaluation analysis loop, to provide a heuristic surgical intervention capability for systemic risk mitigation. We evaluate our approach through extensive case studies and expert reviews. To our knowledge, this is the first practical systemic method for the financial network intervention and risk mitigation problem; our validated approach potentially improves the risk management and control capabilities of financial experts.
In recent years, a wide variety of automated machine learning (AutoML) methods have been proposed to search and generate end-to-end learning pipelines. While these techniques facilitate the creation of models for real-world applications, given their black-box nature, the complexity of the underlying algorithms, and the large number of pipelines they derive, it is difficult for their developers to debug these systems. It is also challenging for machine learning experts to select an AutoML system that is well suited for a given problem or class of problems. In this paper, we present the PipelineProfiler, an interactive visualization tool that allows the exploration and comparison of the solution space of machine learning (ML) pipelines produced by AutoML systems. PipelineProfiler is integrated with Jupyter Notebook and can be used together with common data science tools to enable a rich set of analyses of the ML pipelines and provide insights about the algorithms that generated them. We demonstrate the utility of our tool through several use cases where PipelineProfiler is used to better understand and improve a real-world AutoML system. Furthermore, we validate our approach by presenting a detailed analysis of a think-aloud experiment with six data scientists who develop and evaluate AutoML tools.
202 - Raymond Li 2021
The proliferation of text messaging for mobile health is generating a large amount of patient-doctor conversations that can be extremely valuable to health care professionals. We present ConVIScope, a visual text analytic system that tightly integrat es interactive visualization with natural language processing in analyzing patient-doctor conversations. ConVIScope was developed in collaboration with healthcare professionals following a user-centered iterative design. Case studies with six domain experts suggest the potential utility of ConVIScope and reveal lessons for further developments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا