ﻻ يوجد ملخص باللغة العربية
Heywood cases are known from linear factor analysis literature as variables with communalities larger than 1.00, and in present day factor models, the problem also shows in negative residual variances. For binary data, ordinal factor models can be applied with either delta parameterization or theta parametrization. The former is more common than the latter and can yield Heywood cases when limited information estimation is used. The same problem shows up as nonconvergence cases in theta parameterized factor models and as extremely large discriminations in item response theory (IRT) models. In this study, we explain why the same problem appears in different forms depending on the method of analysis. We first discuss this issue using equations and then illustrate our conclusions using a small simulation study, where all three methods, delta and theta parameterized ordinal factor models (with estimation based on polychoric correlations) and an IRT model (with full information estimation), are used to analyze the same datasets. We also compared the performances of the WLS, WLSMV, and ULS estimators for the ordinal factor models. Finally, we analyze real data with the same three approaches. The results of the simulation study and the analysis of real data confirm the theoretical conclusions.
Poverty is a multidimensional concept often comprising a monetary outcome and other welfare dimensions such as education, subjective well-being or health, that are measured on an ordinal scale. In applied research, multidimensional poverty is ubiquit
Often, government agencies and survey organizations know the population counts or percentages for some of the variables in a survey. These may be available from auxiliary sources, for example, administrative databases or other high quality surveys. W
Factor structures or interactive effects are convenient devices to incorporate latent variables in panel data models. We consider fixed effect estimation of nonlinear panel single-index models with factor structures in the unobservables, which includ
Many existing mortality models follow the framework of classical factor models, such as the Lee-Carter model and its variants. Latent common factors in factor models are defined as time-related mortality indices (such as $kappa_t$ in the Lee-Carter m
We introduce a class of semiparametric time series models by assuming a quasi-likelihood approach driven by a latent factor process. More specifically, given the latent process, we only specify the conditional mean and variance of the time series and