ﻻ يوجد ملخص باللغة العربية
We design a class of spatially inhomogeneous heat spreaders in the context of steady-state thermal conduction leading to spatially uniform thermal fields across a large convective surface. Each spreader has a funnel-shaped design, either in the form of a trapezoidal prism or truncated cone, and is forced by a thermal source at its base. We employ transformation-based techniques, commonly used to study metamaterials, to determine the require thermal conductivity for the spreaders. The obtained materials, although strongly anisotropic and inhomogeneous, can be accurately approximated by assembling isotropic, homogeneous layers, rendering them realisable. An alternative approach is then considered for the conical and trapezoidal spreaders by dividing them into two or three isotropic, homogeneous components respectively. We refer to these simple configurations as neutral layers. All designs are validated numerically. Such novel designs pave the way for future materials that can manipulate and control the flow of heat, helping to solve traditional heat transfer problems such as controlling the temperature of an object and energy harvesting.
Graphene was recently proposed as a material for heat removal owing to its extremely high thermal conductivity. We simulated heat propagation in silicon-on-insulator circuits with and without graphene lateral heat spreaders. Numerical solutions of th
Non-Fourier heat conduction models assume wave-like behavior does exist in the heat conduction process. Based on this wave-like behavior, thermal conduction controlled in a one-dimensional periodical structure, named thermal wave crystal, has been de
We analyze the heat transfer between two nanoparticles separated by a distance lying in the near-field domain in which energy interchange is due to Coulomb interactions. The thermal conductance is computed by assuming that the particles have charge d
We report a new approach to the thermal conductivity manipulation -- substrate coupling. Generally, the phonon scattering with substrates can decrease the thermal conductivity, as observed in recent experiments. However, we find that at certain regio
We review spacetime dynamics in the presence of large-scale electromagnetic fields and then consider the effects of the magnetic component on perturbations to a spatially homogeneous and isotropic universe. Using covariant techniques, we refine and e