ﻻ يوجد ملخص باللغة العربية
We show theoretically that the characteristic modes of dielectric resonator antennas (DRAs) must be capacitive in the low frequency limit, and show that as a consequence of this constraint and the Poincar{e} Separation Theorem, the modes of any DRA consisting of partial elements of an encompassing super-structure cannot resonate at a frequency that is lower than that of the encompassing structure. Thus, design techniques relying on complex sub-structures to miniaturize the antenna, including topology optimization and meandered windings, cannot apply to DRAs. Due to the capacitive nature of the DRA modes, it is also shown that the Q factor of any DRA sub-structure will be bounded from below by that of the super-structure at frequencies below the first self-resonance of the super-structure. We demonstrate these bounding relations with numerical examples.
Studies were made into the arise and an evolution of the beam breakup (BBU) instability in a rectangular dielectric resonator under excitation by a sequence of relativistic electron bunches. The dielectric resonator is a metal rectangular waveguide $
It is well known in the realm of quantum mechanics and information theory that the entropy is non-decreasing for the class of unital physical processes. However, in general, the entropy does not exhibit monotonic behavior. This has restricted the use
The limitations for the coherent manipulation of neutral atoms with fabricated solid state devices, so-called `atom chips, are addressed. Specifically, we examine the dominant decoherence mechanism, which is due to the magnetic noise originating from
Quantum technology offers great advantages in many applications by exploiting quantum resources like nonclassicality, coherence, and entanglement. In practice, an environmental noise unavoidably affects a quantum system and it is thus an important is
In Quantum Illumination (QI), a signal beam initially entangled with an idler beam held at the receiver interrogates a target region bathed in thermal background light. The returned beam is measured jointly with the idler in order to determine whethe