ﻻ يوجد ملخص باللغة العربية
In the multi-messenger era, space and ground-based observatories usually develop real-time analysis (RTA) pipelines to rapidly detect transient events and promptly share information with the scientific community to enable follow-up observations. These pipelines can also react to science alerts shared by other observatories through networks such as the Gamma-Ray Coordinates Network (GCN) and the Astronomers Telegram (ATels). AGILE is a space mission launched in 2007 to study X-ray and gamma-ray phenomena. This contribution presents the technologies used to develop two types of AGILE pipelines using the RTApipe framework and an overview of the main scientific results. The first type performs automated analyses on new AGILE data to detect transient events and automatically sends AGILE notices to the GCN network. Since May 2019, this pipeline has sent more than 50 automated notices with a few minutes delay since data arrival. The second type of pipeline reacts to multi-messenger external alerts (neutrinos, gravitational waves, GRBs, and other transients) received through the GCN network and performs hundreds of analyses searching for counterparts in all AGILE instruments data. The AGILE Team uses these pipelines to perform fast follow-up of science alerts reported by other facilities, which resulted in the publishing of several ATels and GCN circulars.
KM3NeT is a multi-purpose cubic-kilometer neutrino observatory under construction in the Mediterranean Sea. It consists of ORCA and ARCA (for Oscillation and Astroparticle Research with Cosmics in the Abyss, respectively), currently both have a few d
Flares of known astronomical sources and new transient phenomena occur on different timescales, from sub-seconds to several days or weeks. The discovery potential of both serendipitous observations and multi-messenger and multi-wavelength follow-up o
In the multi-messenger era, astronomical projects share information about transients phenomena issuing science alerts to the Scientific Community through different communications networks. This coordination is mandatory to understand the nature of th
The Baikal-GVD deep underwater neutrino experiment participates in the international multi-messenger program on discovering the astrophysical sources of high energy fluxes of cosmic particles, while being at the stage of deployment with a gradual inc
This report provides an overview of recent work that harnesses the Big Data Revolution and Large Scale Computing to address grand computational challenges in Multi-Messenger Astrophysics, with a particular emphasis on real-time discovery campaigns. A