ترغب بنشر مسار تعليمي؟ اضغط هنا

Canonical Noise Distributions and Private Hypothesis Tests

50   0   0.0 ( 0 )
 نشر من قبل Jordan Awan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

$f$-DP has recently been proposed as a generalization of classical definitions of differential privacy allowing a lossless analysis of composition, post-processing, and privacy amplification via subsampling. In the setting of $f$-DP, we propose the concept canonical noise distribution (CND) which captures whether an additive privacy mechanism is appropriately tailored for a given $f$, and give a construction that produces a CND given an arbitrary tradeoff function $f$. We show that private hypothesis tests are intimately related to CNDs, allowing for the release of private $p$-values at no additional privacy cost as well as the construction of uniformly most powerful (UMP) tests for binary data. We apply our techniques to the problem of difference of proportions testing, and construct a UMP unbiased semi-private test which upper bounds the performance of any DP test. Using this as a benchmark we propose a private test, based on the inversion of characteristic functions, which allows for optimal inference for the two population parameters and is nearly as powerful as the semi-private UMPU. When specialized to the case of $(epsilon,0)$-DP, we show empirically that our proposed test is more powerful than any $(epsilon/sqrt 2)$-DP test and has more accurate type I errors than the classic normal approximation test.



قيم البحث

اقرأ أيضاً

We study the problem of estimating finite sample confidence intervals of the mean of a normal population under the constraint of differential privacy. We consider both the known and unknown variance cases and construct differentially private algorith ms to estimate confidence intervals. Crucially, our algorithms guarantee a finite sample coverage, as opposed to an asymptotic coverage. Unlike most previous differentially private algorithms, we do not require the domain of the samples to be bounded. We also prove lower bounds on the expected size of any differentially private confidence set showing that our the parameters are optimal up to polylogarithmic factors.
94 - Ruth Heller , Yair Heller 2016
For testing two random vectors for independence, we consider testing whether the distance of one vector from a center point is independent from the distance of the other vector from a center point by a univariate test. In this paper we provide condit ions under which it is enough to have a consistent univariate test of independence on the distances to guarantee that the power to detect dependence between the random vectors increases to one, as the sample size increases. These conditions turn out to be minimal. If the univariate test is distribution-free, the multivariate test will also be distribution-free. If we consider multiple center points and aggregate the center-specific univariate tests, the power may be further improved, and the resulting multivariate test may be distribution-free for specific aggregation methods (if the univariate test is distribution-free). We show that several multivariate tests recently proposed in the literature can be viewed as instances of this general approach.
We give a bijection between a quotient space of the parameters and the space of moments for any $A$-hypergeometric distribution. An algorithmic method to compute the inverse image of the map is proposed utilizing the holonomic gradient method and an asymptotic equivalence of the map and the iterative proportional scaling. The algorithm gives a method to solve a conditional maximum likelihood estimation problem in statistics. Our interplay between the theory of hypergeometric functions and statistics gives some new formulas of $A$-hypergeometric polynomials.
The prior distribution on parameters of a likelihood is the usual starting point for Bayesian uncertainty quantification. In this paper, we present a different perspective. Given a finite data sample $Y_{1:n}$ of size $n$ from an infinite population, we focus on the missing $Y_{n+1:infty}$ as the source of statistical uncertainty, with the parameter of interest being known precisely given $Y_{1:infty}$. We argue that the foundation of Bayesian inference is to assign a predictive distribution on $Y_{n+1:infty}$ conditional on $Y_{1:n}$, which then induces a distribution on the parameter of interest. Demonstrating an application of martingales, Doob shows that choosing the Bayesian predictive distribution returns the conventional posterior as the distribution of the parameter. Taking this as our cue, we relax the predictive machine, avoiding the need for the predictive to be derived solely from the usual prior to posterior to predictive density formula. We introduce the martingale posterior distribution, which returns Bayesian uncertainty directly on any statistic of interest without the need for the likelihood and prior, and this distribution can be sampled through a computational scheme we name predictive resampling. To that end, we introduce new predictive methodologies for multivariate density estimation, regression and classification that build upon recent work on bivariate copulas.
102 - Yinan Lin , Zhenhua Lin 2021
We develop a unified approach to hypothesis testing for various types of widely used functional linear models, such as scalar-on-function, function-on-function and function-on-scalar models. In addition, the proposed test applies to models of mixed t ypes, such as models with both functional and scalar predictors. In contrast with most existing methods that rest on the large-sample distributions of test statistics, the proposed method leverages the technique of bootstrapping max statistics and exploits the variance decay property that is an inherent feature of functional data, to improve the empirical power of tests especially when the sample size is limited and the signal is relatively weak. Theoretical guarantees on the validity and consistency of the proposed test are provided uniformly for a class of test statistics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا