ترغب بنشر مسار تعليمي؟ اضغط هنا

Segmentation of VHR EO Images using Unsupervised Learning

166   0   0.0 ( 0 )
 نشر من قبل Sudipan Saha
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Semantic segmentation is a crucial step in many Earth observation tasks. Large quantity of pixel-level annotation is required to train deep networks for semantic segmentation. Earth observation techniques are applied to varieties of applications and since classes vary widely depending on the applications, therefore, domain knowledge is often required to label Earth observation images, impeding availability of labeled training data in many Earth observation applications. To tackle these challenges, in this paper we propose an unsupervised semantic segmentation method that can be trained using just a single unlabeled scene. Remote sensing scenes are generally large. The proposed method exploits this property to sample smaller patches from the larger scene and uses deep clustering and contrastive learning to refine the weights of a lightweight deep model composed of a series of the convolution layers along with an embedded channel attention. After unsupervised training on the target image/scene, the model automatically segregates the major classes present in the scene and produces the segmentation map. Experimental results on the Vaihingen dataset demonstrate the efficacy of the proposed method.



قيم البحث

اقرأ أيضاً

We propose an unsupervised segmentation framework for StyleGAN generated objects. We build on two main observations. First, the features generated by StyleGAN hold valuable information that can be utilized towards training segmentation networks. Seco nd, the foreground and background can often be treated to be largely independent and be composited in different ways. For our solution, we propose to augment the StyleGAN2 generator architecture with a segmentation branch and to split the generator into a foreground and background network. This enables us to generate soft segmentation masks for the foreground object in an unsupervised fashion. On multiple object classes, we report comparable results against state-of-the-art supervised segmentation networks, while against the best unsupervised segmentation approach we demonstrate a clear improvement, both in qualitative and quantitative metrics.
Recently deep learning has been playing a major role in the field of computer vision. One of its applications is the reduction of human judgment in the diagnosis of diseases. Especially, brain tumor diagnosis requires high accuracy, where minute erro rs in judgment may lead to disaster. For this reason, brain tumor segmentation is an important challenge for medical purposes. Currently several methods exist for tumor segmentation but they all lack high accuracy. Here we present a solution for brain tumor segmenting by using deep learning. In this work, we studied different angles of brain MR images and applied different networks for segmentation. The effect of using separate networks for segmentation of MR images is evaluated by comparing the results with a single network. Experimental evaluations of the networks show that Dice score of 0.73 is achieved for a single network and 0.79 in obtained for multiple networks.
When deep learning is applied to visual object recognition, data augmentation is often used to generate additional training data without extra labeling cost. It helps to reduce overfitting and increase the performance of the algorithm. In this paper we investigate if it is possible to use data augmentation as the main component of an unsupervised feature learning architecture. To that end we sample a set of random image patches and declare each of them to be a separate single-image surrogate class. We then extend these trivial one-element classes by applying a variety of transformations to the initial seed patches. Finally we train a convolutional neural network to discriminate between these surrogate classes. The feature representation learned by the network can then be used in various vision tasks. We find that this simple feature learning algorithm is surprisingly successful, achieving competitive classification results on several popular vision datasets (STL-10, CIFAR-10, Caltech-101).
Segmentation of organs or lesions from medical images plays an essential role in many clinical applications such as diagnosis and treatment planning. Though Convolutional Neural Networks (CNN) have achieved the state-of-the-art performance for automa tic segmentation, they are often limited by the lack of clinically acceptable accuracy and robustness in complex cases. Therefore, interactive segmentation is a practical alternative to these methods. However, traditional interactive segmentation methods require a large amount of user interactions, and recently proposed CNN-based interactive segmentation methods are limited by poor performance on previously unseen objects. To solve these problems, we propose a novel deep learning-based interactive segmentation method that not only has high efficiency due to only requiring clicks as user inputs but also generalizes well to a range of previously unseen objects. Specifically, we first encode user-provided interior margin points via our proposed exponentialized geodesic distance that enables a CNN to achieve a good initial segmentation result of both previously seen and unseen objects, then we use a novel information fusion method that combines the initial segmentation with only few additional user clicks to efficiently obtain a refined segmentation. We validated our proposed framework through extensive experiments on 2D and 3D medical image segmentation tasks with a wide range of previous unseen objects that were not present in the training set. Experimental results showed that our proposed framework 1) achieves accurate results with fewer user interactions and less time compared with state-of-the-art interactive frameworks and 2) generalizes well to previously unseen objects.
We propose a novel generative adversarial network (GAN) for the task of unsupervised learning of 3D representations from natural images. Most generative models rely on 2D kernels to generate images and make few assumptions about the 3D world. These m odels therefore tend to create blurry images or artefacts in tasks that require a strong 3D understanding, such as novel-view synthesis. HoloGAN instead learns a 3D representation of the world, and to render this representation in a realistic manner. Unlike other GANs, HoloGAN provides explicit control over the pose of generated objects through rigid-body transformations of the learnt 3D features. Our experiments show that using explicit 3D features enables HoloGAN to disentangle 3D pose and identity, which is further decomposed into shape and appearance, while still being able to generate images with similar or higher visual quality than other generative models. HoloGAN can be trained end-to-end from unlabelled 2D images only. Particularly, we do not require pose labels, 3D shapes, or multiple views of the same objects. This shows that HoloGAN is the first generative model that learns 3D representations from natural images in an entirely unsupervised manner.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا