ﻻ يوجد ملخص باللغة العربية
The role of Lorentz symmetry in ghost-free massive gravity is studied, emphasizing features emerging in approximately Minkowski spacetime. The static extrema and saddle points of the potential are determined and their Lorentz properties identified. Solutions preserving Lorentz invariance and ones breaking four of the six Lorentz generators are constructed. Locally, globally, and absolutely stable Lorentz-invariant extrema are found to exist for certain parameter ranges of the potential. Gravitational waves in the linearized theory are investigated. Deviations of the fiducial metric from the Minkowski metric are shown to lead to pentarefringence of the five wave polarizations, which can include superluminal modes and subluminal modes with negative energies in certain observer frames. The Newton limit of ghost-free massive gravity is explored. The propagator is constructed and used to obtain the gravitational potential energy between two point masses. The result extends the Fierz-Pauli limit to include corrections generically breaking both rotation and boost invariance.
In this manuscript we will present the theoretical framework of the recently proposed infinite derivative theory of gravity with a non-symmetric connection. We will explicitly derive the field equations at the linear level and obtain new solutions wi
The vacuum solution of Einsteins theory of general relativity provides a rotating metric with a ring singularity, which is covered by the inner and outer horizons, and an ergo region. In this paper, we will discuss how ghost-free, quadratic curvature
It is shown that polynomial gravity theories with more than four derivatives in each scalar and tensor sectors have a regular weak-field limit, without curvature singularities. This is achieved by proving that in these models the effect of the higher
In this paper we will construct a linearized metric solution for an electrically charged system in a {it ghost-free} infinite derivative theory of gravity which is valid in the entire region of spacetime. We will show that the gravitational potential
We present a detailed study of the spherically symmetric solutions in Lorentz breaking massive gravity. There is an undetermined function $mathcal{F}(X, w_1, w_2, w_3)$ in the action of St{u}ckelberg fields $S_{phi}=Lambda^4int{d^4xsqrt{-g}mathcal{F}