ﻻ يوجد ملخص باللغة العربية
In this paper, we describe a certain kind of $q$-connections on a projective line, namely $Z$-twisted $(G,q)$-opers with regular singularities using the language of generalized minors. In part one arXiv:2002.07344 we explored the correspondence between these $q$-connections and $QQ$-systems/Bethe Ansatz equations. Here we associate to a $Z$-twisted $(G,q)$-oper a class of meromorphic sections of a $G$-bundle, satisfying certain difference equations, which we refer to as generalized $q$-Wronskians. Among other things, we show that the $QQ$-systems and their extensions emerge as the relations between generalized minors, thereby putting the Bethe Ansatz equations in the framework of cluster mutations known in the theory of double Bruhat cells.
We introduce the notions of $(G,q)$-opers and Miura $(G,q)$-opers, where $G$ is a simply-connected complex simple Lie group, and prove some general results about their structure. We then establish a one-to-one correspondence between the set of $(G,q)
We define and study the space of $q$-opers associated with Bethe equations for integrable models of XXZ type with quantum toroidal algebra symmetry. Our construction is suggested by the study of the enumerative geometry of cyclic quiver varieties, in
A special case of the geometric Langlands correspondence is given by the relationship between solutions of the Bethe ansatz equations for the Gaudin model and opers - connections on the projective line with extra structure. In this paper, we describe
We review the exact treatment of the pairing correlation functions in the canonical ensemble. The key for the calculations has been provided by relating the discrete BCS model to known integrable theories corresponding to the so called Gaudin magnets
Our review covers microscopic foundations of generalized hydrodynamics (GHD). As one generic approach we develop form factor expansions, for ground states and generalized Gibbs ensembles (GGE), and compare the so obtained results with predictions fro