ترغب بنشر مسار تعليمي؟ اضغط هنا

Phenomenological extraction of a universal TMD fragmentation function from single hadron production in $e^+ e^-$ annihilations

151   0   0.0 ( 0 )
 نشر من قبل Mariaelena Boglione
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Factorizing the cross section for single hadron production in $e^+e^-$ annihilations, differential in $z_h$, $P_T$ and thrust, is a highly non trivial task. We have devised a factorization scheme that allows us to recast the $e^+e^- to hX$ cross section in the convolution of a perturbatively calculable coefficient and a universal Transverse Momentum Dependent (TMD) Fragmentation Function (FF). The predictions obtained from our NLO-NLL perturbative computation, together with a simple ansatz to model the non-perturbative part of the TMD, are applied to the experimental measurements of the BELLE Collaboration for the phenomenological extraction of this process independent TMD FF.



قيم البحث

اقرأ أيضاً

We present a thorough phenomenological analysis of the experimental data from Belle Collaboration for the transverse $Lambda$ and $barLambda$ polarisation, measured in $e^+e^-$ annihilation processes, for the case of inclusive (plus a jet) and associ ated production with a light charged hadron. This allows for the first ever extraction of the quark polarising fragmentation function for a $Lambda$ hyperon, a transverse momentum dependent distribution giving the probability that an unpolarised quark fragments into a transversely polarised spin-1/2 hadron.
We present the complete leading-order results for the azimuthal dependences and polarization observables in $e^+e^-to h_1 h_2 + X$ processes, where the two hadrons are produced almost back-to-back, within a transverse momentum dependent (TMD) factori zation scheme. We consider spinless (or unpolarized) and spin-1/2 hadron production and give the full set of the corresponding quark and gluon TMD fragmentation functions (TMD-FFs). By adopting the helicity formalism, which allows for a more direct probabilistic interpretation, single- and double-polarization cases are discussed in detail. Simplified expressions, useful for phenomenological analyses, are obtained by assuming a factorized Gaussian-like dependence on intrinsic transverse momenta for the TMD-FFs.
We report on the first extraction of interference fragmentation functions from the semi-inclusive production of two hadron pairs in back-to-back jets in e+e- annihilation. A nonzero asymmetry in the correlation of azimuthal orientations of opposite p i+pi- pairs is related to the transverse polarization of fragmenting quarks through a significant polarized dihadron fragmentation function. Extraction of the latter requires the knowledge of its unpolarized counterpart, the probability density for a quark to fragment in a pi+pi- pair. Since data for the unpolarized cross section are missing, we extract the unpolarized dihadron fragmentation function from a Monte Carlo simulation of the cross section.
The latest data released by the BaBar Collaboration on azimuthal correlations measured for pion-kaon and kaon-kaon pairs produced in $e^+e^-$ annihilations allow, for the first time, a direct extraction of the kaon Collins functions. These functions are then used to compute the kaon Collins asymmetries in Semi Inclusive Deep Inelastic Scattering processes, which result in good agreement with the measurements performed by the HERMES and COMPASS Collaborations.
Experimental data from Belle Collaboration for the transverse polarization of $Lambda$s measured in $e^+ e^-$ annihilation processes are used to extract the polarizing fragmentation function (FF) within a TMD approach. We consider both associated and inclusive $Lambda$ production, showing a quite consistent scenario. Good separation in flavor is obtained, leading to four independent FFs. Predictions for SIDIS processes at the EIC, crucial for understanding their universality and evolution properties, are also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا