ترغب بنشر مسار تعليمي؟ اضغط هنا

A computational medical XR discipline

53   0   0.0 ( 0 )
 نشر من قبل George Papagiannakis Prof.
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Computational medical XR (extended reality) unifies the computer science applications of intelligent reality, medical virtual reality, medical augmented reality and spatial computing for medical training, planning and navigation content creation. It builds upon clinical XR by bringing on novel low-code/no-code XR authoring platforms, suitable for medical professionals as well as XR content creators.



قيم البحث

اقرأ أيضاً

Applications of the Extended Reality (XR) spectrum, a superset of Mixed, Augmented and Virtual Reality, are gaining prominence and can be employed in a variety of areas, such as virtual museums. Examples can be found in the areas of education, cultur al heritage, health/treatment, entertainment, marketing, and more. The majority of computer graphics applications nowadays are used to operate only in one of the above realities. The lack of applications across the XR spectrum is a real shortcoming. There are many advantages resulting from this problems solution. Firstly, releasing an application across the XR spectrum could contribute in discovering its most suitable reality. Moreover, an application could be more immersive within a particular reality, depending on its context. Furthermore, its availability increases to a broader range of users. For instance, if an application is released both in Virtual and Augmented Reality, it is accessible to users that may lack the possession of a VR headset, but not of a mobile AR device. The question that arises at this point, would be Is it possible for a full s/w application stack to be converted across XR without sacrificing UI/UX in a semi-automatic way?. It may be quite difficult, depending on the architecture and application implementation. Most companies nowadays support only one reality, due to their lack of UI/UX software architecture or resources to support the complete XR spectrum. In this work, we present an automatic reality transition in the context of virtual museum applications. We propose a development framework, which will automatically allow this XR transition. This framework transforms any XR project into different realities such as Augmented or Virtual. It also reduces the development time while increasing the XR availability of 3D applications, encouraging developers to release applications across the XR spectrum.
Thanks to recent advancements in the technology, eXtended Reality (XR) applications are gaining a lot of momentum, and they will surely become increasingly popular in the next decade. These new applications, however, require a step forward also in te rms of models to simulate and analyze this type of traffic sources in modern communication networks, in order to guarantee to the users state of the art performance and Quality of Experience (QoE). Recognizing this need, in this work, we present a novel open-source traffic model, which researchers can use as a starting point both for improvements of the model itself and for the design of optimized algorithms for the transmission of these peculiar data flows. Along with the mathematical model and the code, we also share with the community the traces that we gathered for our study, collected from freely available applications such as Minecraft VR, Google Earth VR, and Virus Popper. Finally, we propose a roadmap for the construction of an end-to-end framework that fills this gap in the current state of the art.
In this work, a new and innovative way of spatial computing that appeared recently in the bibliography called True Augmented Reality (AR), is employed in cultural heritage preservation. This innovation could be adapted by the Virtual Museums of the f uture to enhance the quality of experience. It emphasises, the fact that a visitor will not be able to tell, at a first glance, if the artefact that he/she is looking at is real or not and it is expected to draw the visitors interest. True AR is not limited to artefacts but extends even to buildings or life-sized character simulations of statues. It provides the best visual quality possible so that the users will not be able to tell the real objects from the augmented ones. Such applications can be beneficial for future museums, as with True AR, 3D models of various exhibits, monuments, statues, characters and buildings can be reconstructed and presented to the visitors in a realistic and innovative way. We also propose our Virtual Reality Sample application, a True AR playground featuring basic components and tools for generating interactive Virtual Museum applications, alongside a 3D reconstructed character (the priest of Asinou church) facilitating the storyteller of the augmented experience.
Background: Biological data often originate from samples containing mixtures of subpopulations, corresponding e.g. to distinct cellular phenotypes. However, identification of distinct subpopulations may be difficult if biological measurements yield d istributions that are not easily separable. Results: We present Multiresolution Correlation Analysis (MCA), a method for visually identifying subpopulations based on the local pairwise correlation between covariates, without needing to define an a priori interaction scale. We demonstrate that MCA facilitates the identification of differentially regulated subpopulations in simulated data from a small gene regulatory network, followed by application to previously published single-cell qPCR data from mouse embryonic stem cells. We show that MCA recovers previously identified subpopulations, provides additional insight into the underlying correlation structure, reveals potentially spurious compartmentalizations, and provides insight into novel subpopulations. Conclusions: MCA is a useful method for the identification of subpopulations in low-dimensional expression data, as emerging from qPCR or FACS measurements. With MCA it is possible to investigate the robustness of covariate correlations with respect subpopulations, graphically identify outliers, and identify factors contributing to differential regulation between pairs of covariates. MCA thus provides a framework for investigation of expression correlations for genes of interests and biological hypothesis generation.
Trusses are load-carrying light-weight structures consisting of bars connected at joints ubiquitously applied in a variety of engineering scenarios. Designing optimal trusses that satisfy functional specifications with a minimal amount of material ha s interested both theoreticians and practitioners for more than a century. In this paper, we introduce two main ideas to improve upon the state of the art. First, we formulate an alternating linear programming problem for geometry optimization. Second, we introduce two sets of complementary topological operations, including a novel subdivision scheme for global topology refinement inspired by Michells famed theoretical study. Based on these two ideas, we build an efficient computational framework for the design of lightweight trusses. AD{We illustrate our framework with a variety of functional specifications and extensions. We show that our method achieves trusses with smaller volumes and is over two orders of magnitude faster compared with recent state-of-the-art approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا