ﻻ يوجد ملخص باللغة العربية
The Curzon-Ahlborn (CA) efficiency, as the efficiency at the maximum power (EMP) of the endoreversible Carnot engine, has significant impact in finite-time thermodynamics. In the past two decades, a lot of efforts have been made to seek a microscopic theory of the CA efficiency. It is generally believed that the CA efficiency is approached in the symmetric low-dissipation regime of dynamical models. Contrary to the general belief, without the low-dissipation assumption, we formulate a microscopic theory of the CA engine realized with an underdamped Brownian particle in a class of non-harmonic potentials. This microscopic theory not only explains the dynamical origin of all assumptions made by Curzon and Ahlborn, but also confirms that in the highly underdamped regime, the CA efficiency is always the EMP irrespective of the symmetry of the dissipation. The low-dissipation regime is included in the microscopic theory as a special case. Also, based on this theory, we obtain the control scheme associated with the maximum power for any given efficiency, as well as analytical expressions of the power and the efficiency statistics for the Brownian CA engine. Our research brings new perspectives to experimental study of finite-time microscopic heat engines featured with fluctuations.
In order to establish better performance compromises between the process functionals of a heat engine, in the context of finite time thermodynamics (FTT), we propose some generalizations for the well known Efficient Power function through certain var
Microorganisms such as bacteria are active matters which consume chemical energy and generate their unique run-and-tumble motion. A swarm of such microorganisms provide a nonequilibrium active environment whose noise characteristics are different fro
The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors and some artificial micro
Heat engines used to output useful work have important practical significance, which, in general, operate between heat baths of infinite size and constant temperature. In this paper we study the efficiency of a heat engine operating between two finit
Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact w