ﻻ يوجد ملخص باللغة العربية
The isotope abundances provide powerful diagnostics of the chemical enrichment in our Galaxy. The star HD 140283 is one of the best-studied very metal-poor dwarf stars. It is very old, and the chemical abundance in this star is a good witness of the chemical composition of the matter in the early Galaxy. The aim of this work is to measure the precise abundances of carbon, nitrogen, oxygen, and mainly the 12C/13C isotopic ratio in this very old metal-poor star in order to have a good reference for the computations of the chemical evolution of the Galaxy. We used very high spectral resolution data, with extremely high signal-to-noise ratios obtained with the spectrographs ESPaDOnS at the CFHT, ESPRESSO at the VLT, and HARPS at the ESO 3.6m telescope. For the first time, we were able to measure the 12C/13C ratio in a very old metal-poor dwarf that was born at the very beginning of the Galaxy: 27 < 12C/13C < 45. We also obtained a precise determination of the abundance of the CNO elements in this star. These abundances suggest that the effect of super-asymptotic giant branch stars or fast-rotating massive stars was significant in the early Galaxy.
Sagittarius (Sgr) is a massive disrupted dwarf spheroidal galaxy in the Milky Way halo that has undergone several stripping events. Previous chemical studies were restricted mainly to a few, metal- rich ([Fe/H]~ -1) stars that suggested a top-light i
Unevolved metal poor stars are the witness of the early evolution of the Galaxy. The determination of their detailed chemical composition is an important tool to understand the chemical history of our Galaxy. The study of their chemical composition c
We discuss the detailed composition of 28 extremely metal-poor dwarfs, 22 of which are from the Hamburg/ESO Survey, based on Keck Echelle spectra. Our sample has a median [Fe/H] of -2.7 dex, extends to -3.5 dex, and is somewhat less metal-poor than w
We have obtained new detailed abundances of the Fe-group elements Sc through Zn (Z=21-30) in three very metal-poor ([Fe/H] $approx -3$) stars: BD 03 740, BD -13 3442 and CD -33 1173. High-resolution ultraviolet HST/STIS spectra in the wavelength rang
Large stellar surveys of the Milky Way require validation with reference to a set of benchmark stars whose fundamental properties are well-determined. For metal-poor benchmark stars, disagreement between spectroscopic and interferometric effective te