ﻻ يوجد ملخص باللغة العربية
A graph $G$ is called $C_k$-saturated if $G$ is $C_k$-free but $G+e$ not for any $ein E(overline{G})$. The saturation number of $C_k$, denoted $sat(n,C_k)$, is the minimum number of edges in a $C_k$-saturated graph on $n$ vertices. Finding the exact values of $sat(n,C_k)$ has been one of the most intriguing open problems in extremal graph theory. In this paper, we study the saturation number of $C_6$. We prove that ${4n}/{3}-2 le sat(n,C_6) le {(4n+1)}/{3}$ for $nge9$, which significantly improves the existing lower and upper bounds for $sat(n,C_6)$.
A graph $G$ is called $F$-saturated if $G$ does not contain $F$ as a subgraph (not necessarily induced) but the addition of any missing edge to $G$ creates a copy of $F$. The saturation number of $F$, denoted by $sat(n,F)$, is the minimum number of e
For a fixed graph $F$ and an integer $t$, the dfn{rainbow saturation number} of $F$, denoted by $sat_t(n,mathfrak{R}(F))$, is defined as the minimum number of edges in a $t$-edge-colored graph on $n$ vertices which does not contain a dfn{rainbow copy
We study F-saturation games, first introduced by Furedi, Reimer and Seress in 1991, and named as such by West. The main question is to determine the length of the game whilst avoiding various classes of graph, playing on a large complete graph. We sh
We look at several saturation problems in complete balanced blow-ups of graphs. We let $H[n]$ denote the blow-up of $H$ onto parts of size $n$ and refer to a copy of $H$ in $H[n]$ as partite if it has one vertex in each part of $H[n]$. We then ask ho
We prove that if the spectral radius of a graph G of order n is larger than the spectral radius of the r-partite Turan graph of the same order, then G contains various supergraphs of the complete graph of order r+1. In particular G contains a complet