ترغب بنشر مسار تعليمي؟ اضغط هنا

Fragment Intrinsic Spins and Fragments Relative Orbital Angular Momentum in Nuclear Fission

89   0   0.0 ( 0 )
 نشر من قبل Aurel Bulgac
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first fully unrestricted microscopic calculations of the primary fission fragment intrinsic spins and of the fission fragments relative orbital angular momentum for $^{236}$U$^*$, $^{240}$Pu$^*$, and $^{252}$Cf using the time-dependent density functional theory framework. Within this microscopic approach, free of restrictions and unchecked assumptions and which incorporates the relevant physical observables relevant for describing fission, we evaluate the triple distribution of the fission fragment intrinsic spins and of their fission fragments relative orbital angular momentum and show that their dynamics is dominated by their bending collective modes, in contradistinction to the predictions of the existing phenomenological models and some interpretations of experimental data.

قيم البحث

اقرأ أيضاً

89 - Aurel Bulgac 2021
It is shown that the unexpected character of the angular correlation between the angle of the primary fission fragment intrinsic spins, recently evaluated by performing very complex time-dependent density functional simulations, which favors fission fragment intrinsic spins pointing in opposite directions, can be understood using simple general arguments.
The intrinsic spins and their correlations are the least understood characteristics of fission fragments from both theoretical and experimental points of view. In many nuclear reactions the emerging fragments are typically excited and acquire an intr insic excitation energy and an intrinsic spin depending on the type of the reactions and interaction mechanism. Both the intrinsic excitation energies and the fragments intrinsic spins and parities are controlled by the interaction mechanism and conservations laws, which lead to their correlations and determines the character of their de-excitation mechanism. We outline here a framework for the theoretical extraction of the intrinsic spin distributions of the fragments and their correlations within the fully microscopic real-time density functional theory formalism and illustrate it on the example of induced fission of $^{236}$U and $^{240}$Pu, using two nuclear energy density functionals. These fission fragment intrinsic spin distributions display new qualitative features previously not discussed in literature. Within this fully microscopic framework we extract for the first time the intrinsic spin distributions of fission fragments of $^{236}$U and $^{240}$Pu as well as the correlations of their intrinsic spins, which have been debated in literature for more than six decades with no definite conclusions so far.
74 - J. Randrup , R. Vogt 2021
A recent analysis of experimental data [J. Wilson $et. al$, Nature $mathbf 590$, 566 (2021)] found that the angular momenta of nuclear fission fragments are uncorrelated. Based on this finding, the authors concluded that the spins are therefore deter mined only $after$ scission has occurred. We show here that the nucleon-exchange mechanism, as implemented in the well-established event-by-event fission model $mathtt{FREYA}$, while agitating collective rotational modes in which the two spins are highly correlated, nevertheless leads to fragment spins that are largely uncorrelated. This fact invalidates the reasoning of those authors. Furthermore, it was reported [J. Wilson $et. al$, Nature $mathbf 590$, 566 (2021)] that the mass dependence of the average fragment spin has a sawtooth structure. We demonstrate that such a behavior naturally emerges when shell and deformation effects are included in the moments of inertia of the fragments at scission.
252 - I. Stetcu , A.E. Lovell , P. Talou 2021
We investigate the angular momentum removal from fission fragments (FFs) through neutron and $gamma$-ray emission, where we find that about half the neutrons are emitted with angular momenta $ge 1.5hbar$ and that the change in angular momentum after the emission of neutrons and statistical $gamma$ rays is significant, contradicting usual assumptions. Per fission event, in our simulations, the neutron and statistical $gamma$-ray emissions change the spin of the fragment by 3.5 -- 5~$hbar$, with a large standard deviation comparable to the average value. Such wide angular momentum removal distributions can hide any underlying correlations in the fission fragment initial spin values. Within our model, we reproduce data on spin measurements from discrete transitions after neutron emissions, especially in the case of light FFs. The agreement further improves for the heavy fragments if one removes from the analysis the events that would produce isomeric states. Finally, we show that while in our model the initial FF spins do not follow a saw-tooth like behavior observed in recent measurements, the average FF spin computed after neutron and statistical $gamma$ emissions exhibits a shape that resembles a saw tooth. This suggests that the average FF spin measured after statistical emissions is not necessarily connected with the scission mechanism as previously implied.
56 - C. L. Zhang , B. Schuetrumpf , 2016
An electron localization measure was originally introduced to characterize chemical bond structures in molecules. Recently, a nucleon localization based on Hartree-Fock densities has been introduced to investigate $alpha$-cluster structures in light nuclei. Compared to the local nucleonic densities, the nucleon localization function has been shown to be an excellent indicator of shell effects and cluster correlations. Using the spatial nucleon localization measure, we investigate the emergence of fragments in fissioning heavy nuclei. To illustrate basic concepts of nucleon localization, we employ the self-consistent energy density functional method with a quantified energy density functional optimized for fission studies. We study the particle densities and spatial nucleon localization distributions along the fission pathways of $^{264}$Fm, $^{232}$Th and $^{240}$Pu. We demonstrate that the fission fragments are formed fairly early in the evolution, well before scission. We illustrate the usefulness of the localization measure by showing how the hyperdeformed state of $^{232}$Th can be understood in terms of a quasimolecular state made of $^{132}$Sn and $^{100}$Zr fragments. Compared to nucleonic distributions, the nucleon localization function more effectively quantifies nucleonic clustering: its characteristic oscillating pattern, traced back to shell effects, is a clear fingerprint of cluster/fragment configurations. This is of particular interest for studies of fragment formation and fragment identification in fissioning nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا