ﻻ يوجد ملخص باللغة العربية
With the miniaturization and integration of nanoelectronic devices, efficient heat removal becomes a key factor affecting the reliable operation of the nanoelectronic device. With the high intrinsic thermal conductivity, good mechanical flexibility, and precisely controlled growth, two-dimensional (2D) materials are widely accepted as ideal candidates for thermal management materials. In this work, by solving the phonon Boltzmann transport equation (BTE) based on first-principles calculations, we comprehensively investigated the thermal conductivity of novel 2D layered MSi$_2$N$_4$ (M = Mo, W). Our results point to competitive thermal conductivities (162 W/mK) of monolayer MoSi$_2$N$_4$, which is around two times larger than that of WSi$_2$N$_4$ and seven times larger than that of silicene despite their similar non-planar structures. It is revealed that the high thermal conductivity arises mainly from its large group velocity and low anharmonicity. Our result suggests that MoSi$_2$N$_4$ could be a potential candidate for 2D thermal management materials.
The family of two-dimensional transition metal carbides, so called MXenes, has recently found new members with ordered double transition metals M$_2$M$$C$_2$, where M$$ and M$$ stand for transition metals. Here, using a set of first-principles calcul
Two-dimensional topological insulators and two-dimensional materials with ferroelastic characteristics are intriguing materials and many examples have been reported both experimentally and theoretically. Here, we present the combination of both featu
The growing library of two-dimensional layered materials is providing researchers with a wealth of opportunity to explore and tune physical phenomena at the nanoscale. Here, we review the experimental and theoretical state-of-art concerning the elect
Van der Waals heterostructure based on layered two-dimensional (2D) materials offers unprecedented opportunities to create materials with atomic precision by design. By combining superior properties of each component, such heterostructure also provid
Two-dimensional (2D) MoSi$_2$N$_4$ monolayer is an emerging class of air-stable 2D semiconductor possessing exceptional electrical and mechanical properties. Despite intensive recent research efforts devoted to uncover the material properties of MoSi