ﻻ يوجد ملخص باللغة العربية
Numerous neural retrieval models have been proposed in recent years. These models learn to compute a ranking score between the given query and document. The majority of existing models are trained in pairwise fashion using human-judged labels directly without further calibration. The traditional pairwise schemes can be time-consuming and require pre-defined positive-negative document pairs for training, potentially leading to learning bias due to document distribution mismatch between training and test conditions. Some popular existing listwise schemes rely on the strong pre-defined probabilistic assumptions and stark difference between relevant and non-relevant documents for the given query, which may limit the model potential due to the low-quality or ambiguous relevance labels. To address these concerns, we turn to a physics-inspired ranking balance scheme and propose PoolRank, a pooling-based listwise learning framework. The proposed scheme has four major advantages: (1) PoolRank extracts training information from the best candidates at the local level based on model performance and relative ranking among abundant document candidates. (2) By combining four pooling-based loss components in a multi-task learning fashion, PoolRank calibrates the ranking balance for the partially relevant and the highly non-relevant documents automatically without costly human inspection. (3) PoolRank can be easily generalized to any neural retrieval model without requiring additional learnable parameters or model structure modifications. (4) Compared to pairwise learning and existing listwise learning schemes, PoolRank yields better ranking performance for all studied retrieval models while retaining efficient convergence rates.
Recent innovations in Transformer-based ranking models have advanced the state-of-the-art in information retrieval. However, these Transformers are computationally expensive, and their opaque hidden states make it hard to understand the ranking proce
Modern search engine ranking pipelines are commonly based on large machine-learned ensembles of regression trees. We propose LEAR, a novel - learned - technique aimed to reduce the average number of trees traversed by documents to accumulate the scor
Direct optimization of IR metrics has often been adopted as an approach to devise and develop ranking-based recommender systems. Most methods following this approach aim at optimizing the same metric being used for evaluation, under the assumption th
Most approaches for similar text retrieval and ranking with long natural language queries rely at some level on queries and responses having words in common with each other. Recent applications of transformer-based neural language models to text retr
Passage retrieval and ranking is a key task in open-domain question answering and information retrieval. Current effective approaches mostly rely on pre-trained deep language model-based retrievers and rankers. These methods have been shown to effect