ﻻ يوجد ملخص باللغة العربية
Automatic summarization techniques aim to shorten and generalize information given in the text while preserving its core message and the most relevant ideas. This task can be approached and treated with a variety of methods, however, not many attempts have been made to produce solutions specifically for the Russian language despite existing localizations of the state-of-the-art models. In this paper, we aim to showcase ruGPT3 ability to summarize texts, fine-tuning it on the corpora of Russian news with their corresponding human-generated summaries. Additionally, we employ hyperparameter tuning so that the models output becomes less random and more tied to the original text. We evaluate the resulting texts with a set of metrics, showing that our solution can surpass the state-of-the-art models performance without additional changes in architecture or loss function. Despite being able to produce sensible summaries, our model still suffers from a number of flaws, namely, it is prone to altering Named Entities present in the original text (such as surnames, places, dates), deviating from facts stated in the given document, and repeating the information in the summary.
Inductive transfer learning has greatly impacted computer vision, but existing approaches in NLP still require task-specific modifications and training from scratch. We propose Universal Language Model Fine-tuning (ULMFiT), an effective transfer lear
With the COVID-19 pandemic, there is a growing urgency for medical community to keep up with the accelerating growth in the new coronavirus-related literature. As a result, the COVID-19 Open Research Dataset Challenge has released a corpus of scholar
The massive growth of digital biomedical data is making biomedical text indexing and classification increasingly important. Accordingly, previous research has devised numerous deep learning techniques focused on using feedforward, convolutional or re
Neural abstractive summarization methods often require large quantities of labeled training data. However, labeling large amounts of summarization data is often prohibitive due to time, financial, and expertise constraints, which has limited the usef
Models pretrained with self-supervised objectives on large text corpora achieve state-of-the-art performance on English text summarization tasks. However, these models are typically fine-tuned on hundreds of thousands of data points, an infeasible re