ترغب بنشر مسار تعليمي؟ اضغط هنا

Fine-tuning GPT-3 for Russian Text Summarization

435   0   0.0 ( 0 )
 نشر من قبل Arina Puchkova
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Automatic summarization techniques aim to shorten and generalize information given in the text while preserving its core message and the most relevant ideas. This task can be approached and treated with a variety of methods, however, not many attempts have been made to produce solutions specifically for the Russian language despite existing localizations of the state-of-the-art models. In this paper, we aim to showcase ruGPT3 ability to summarize texts, fine-tuning it on the corpora of Russian news with their corresponding human-generated summaries. Additionally, we employ hyperparameter tuning so that the models output becomes less random and more tied to the original text. We evaluate the resulting texts with a set of metrics, showing that our solution can surpass the state-of-the-art models performance without additional changes in architecture or loss function. Despite being able to produce sensible summaries, our model still suffers from a number of flaws, namely, it is prone to altering Named Entities present in the original text (such as surnames, places, dates), deviating from facts stated in the given document, and repeating the information in the summary.

قيم البحث

اقرأ أيضاً

Inductive transfer learning has greatly impacted computer vision, but existing approaches in NLP still require task-specific modifications and training from scratch. We propose Universal Language Model Fine-tuning (ULMFiT), an effective transfer lear ning method that can be applied to any task in NLP, and introduce techniques that are key for fine-tuning a language model. Our method significantly outperforms the state-of-the-art on six text classification tasks, reducing the error by 18-24% on the majority of datasets. Furthermore, with only 100 labeled examples, it matches the performance of training from scratch on 100x more data. We open-source our pretrained models and code.
With the COVID-19 pandemic, there is a growing urgency for medical community to keep up with the accelerating growth in the new coronavirus-related literature. As a result, the COVID-19 Open Research Dataset Challenge has released a corpus of scholar ly articles and is calling for machine learning approaches to help bridging the gap between the researchers and the rapidly growing publications. Here, we take advantage of the recent advances in pre-trained NLP models, BERT and OpenAI GPT-2, to solve this challenge by performing text summarization on this dataset. We evaluate the results using ROUGE scores and visual inspection. Our model provides abstractive and comprehensive information based on keywords extracted from the original articles. Our work can help the the medical community, by providing succinct summaries of articles for which the abstract are not already available.
152 - Bruce Nguyen , Shaoxiong Ji 2021
The massive growth of digital biomedical data is making biomedical text indexing and classification increasingly important. Accordingly, previous research has devised numerous deep learning techniques focused on using feedforward, convolutional or re current neural architectures. More recently, fine-tuned transformers-based pretrained models (PTMs) have demonstrated superior performance compared to such models in many natural language processing tasks. However, the direct use of PTMs in the biomedical domain is only limited to the target documents, ignoring the rich semantic information in the label descriptions. In this paper, we develop an improved label attention-based architecture to inject semantic label description into the fine-tuning process of PTMs. Results on two public medical datasets show that the proposed fine-tuning scheme outperforms the conventionally fine-tuned PTMs and prior state-of-the-art models. Furthermore, we show that fine-tuning with the label attention mechanism is interpretable in the interpretability study.
Neural abstractive summarization methods often require large quantities of labeled training data. However, labeling large amounts of summarization data is often prohibitive due to time, financial, and expertise constraints, which has limited the usef ulness of summarization systems to practical applications. In this paper, we argue that this limitation can be overcome by a semi-supervised approach: consistency training which is to leverage large amounts of unlabeled data to improve the performance of supervised learning over a small corpus. The consistency regularization semi-supervised learning can regularize model predictions to be invariant to small noise applied to input articles. By adding noised unlabeled corpus to help regularize consistency training, this framework obtains comparative performance without using the full dataset. In particular, we have verified that leveraging large amounts of unlabeled data decently improves the performance of supervised learning over an insufficient labeled dataset.
Models pretrained with self-supervised objectives on large text corpora achieve state-of-the-art performance on English text summarization tasks. However, these models are typically fine-tuned on hundreds of thousands of data points, an infeasible re quirement when applying summarization to new, niche domains. In this work, we introduce a novel and generalizable method, called WikiTransfer, for fine-tuning pretrained models for summarization in an unsupervised, dataset-specific manner. WikiTransfer fine-tunes pretrained models on pseudo-summaries, produced from generic Wikipedia data, which contain characteristics of the target dataset, such as the length and level of abstraction of the desired summaries. WikiTransfer models achieve state-of-the-art, zero-shot abstractive summarization performance on the CNN-DailyMail dataset and demonstrate the effectiveness of our approach on three additional diverse datasets. These models are more robust to noisy data and also achieve better or comparable few-shot performance using 10 and 100 training examples when compared to few-shot transfer from other summarization datasets. To further boost performance, we employ data augmentation via round-trip translation as well as introduce a regularization term for improved few-shot transfer. To understand the role of dataset aspects in transfer performance and the quality of the resulting output summaries, we further study the effect of the components of our unsupervised fine-tuning data and analyze few-shot performance using both automatic and human evaluation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا