ترغب بنشر مسار تعليمي؟ اضغط هنا

New insights from old cosmic rays: A novel analysis of archival KASCADE data

81   0   0.0 ( 0 )
 نشر من قبل Dmitriy Kostunin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmic ray data collected by the KASCADE air shower experiment are competitive in terms of quality and statistics with those of modern observatories. We present a novel mass composition analysis based on archival data acquired from 1998 to 2013 provided by the KASCADE Cosmic ray Data Center (KCDC). The analysis is based on modern machine learning techniques trained on simulation data provided by KCDC. We present spectra for individual groups of primary nuclei, the results of a search for anisotropies in the event arrival directions taking mass composition into account, and search for gamma-ray candidates in the PeV energy domain.

قيم البحث

اقرأ أيضاً

KASCADE-Grande and its original array of KASCADE were dedicated to measure individual air showers of cosmic rays with great detail in the primary energy range of 100 TeV up to 1 EeV. The experiment has significantly contributed to investigations of t he energy spectrum and chemical composition of cosmic rays in the transition region from galactic to extragalactic origin of cosmic rays as well as to the further development of hadronic interaction models through validity tests using the multi-detector information from KASCADE-Grande. Though the data accumulation was completed in 2013, the data analysis is still continuing. Recently, we investigate the reliability of the new hadronic interactions model of the Sibyll version 2.3d with the combined data from KASCADE and KASCADE-Grande, and compare it to the predictions of different hadronic interaction models. In addition, we update the web-based platform of the KASCADE Cosmic Ray Data Centre (KCDC), where now full datasets from KASCADE and KASCADE-Grande and the corresponding Monte-Carlo simulated events are available.
The detection of high-energy cosmic rays above a few hundred TeV is realized by the observation of extensive air-showers. By using the multi-detector setup of KASCADE-Grande, energy spectrum, elemental composition, and anisotropies of high-energy cos mic rays in the energy range from below the knee up to 2 EeV are investigated. In addition, the large high-quality data set permits distinct tests of the validity of hadronic interaction models used in interpreting air-shower measurements. After more than 16 years, the KASCADE-Grande experiment terminated measurements end of 2012. This contribution will give an overview of the main results of the data analysis achieved so far, and will report about the status of KCDC, the KASCADE Cosmic-ray Data Center, where via a web-based interface the data will be made available for the interested public.
86 - D. Kang , A. Haungs , W.D. Apel 2019
Over the past 20 years, KASCADE and its extension KASCADE-Grande were dedicated to measure high-energy cosmic rays with primary energies of 100 TeV to 1 EeV. The data accumulation was fully completed and all experimental components were dismantled, t hough the analysis of the high-quality data is still continued. E.g., we investigated the validity of the hadronic interaction model of the new SIBYLL version 2.3c. We also published a new result of a search for large-scale anisotropies performed with the KASCADE-Grande data. Investigation of the attenuation length of the muon in the atmosphere is also updated with the predictions of the SIBYLL 2.3 interaction model. We investigated, in addition, the muon content of high-energy air showers and compared them to all post-LHC interaction models. In this contribution, the new and updated results from KASCADE-Grande will be presented. An update of the web-based data center KCDC offering the original scientific data from KASCADE-Grande to the public will be briefly discussed as well.
A new family of parameters intended for composition studies in cosmic ray surface array detectors is proposed. The application of this technique to different array layout designs has been analyzed. The parameters make exclusive use of surface data co mbining the information from the total signal at each triggered detector and the array geometry. They are sensitive to the combined effects of the different muon and electromagnetic components on the lateral distribution function of proton and iron initiated showers at any given primary energy. Analytical and numerical studies have been performed in order to assess the reliability, stability and optimization of these parameters. Experimental uncertainties, the underestimation of the muon component in the shower simulation codes, intrinsic fluctuations and reconstruction errors are considered and discussed in a quantitative way. The potential discrimination power of these parameters, under realistic experimental conditions, is compared on a simplified, albeit quantitative way, with that expected from other surface and fluorescence estimators.
203 - Mario Sitta 2017
ALICE, a general purpose experiment designed to investigate nucleus-nucleus collisions at the CERN Large Hadron Collider (LHC), has also been used to detect atmospheric muons produced by cosmic-ray interactions in the atmosphere. In this contributi on the analysis of the multiplicity distribution of the atmospheric muons detected by ALICE between 2010 and 2013 is presented, along with a comparison with Monte Carlo simulations. Special emphasis is given to the study of high-multiplicity events, i.e. those containing more than 100 reconstructed muons. Such high-multiplicity events demand primary cosmic rays with energy above $10^{16}$ eV. The frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range, using the most recent interaction models to describe the development of the air shower resulting from the primary interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا