ترغب بنشر مسار تعليمي؟ اضغط هنا

PatchRNN: A Deep Learning-Based System for Security Patch Identification

108   0   0.0 ( 0 )
 نشر من قبل Shu Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the increasing usage of open-source software (OSS) components, vulnerabilities embedded within them are propagated to a huge number of underlying applications. In practice, the timely application of security patches in downstream software is challenging. The main reason is that such patches do not explicitly indicate their security impacts in the documentation, which would be difficult to recognize for software maintainers and users. However, attackers can still identify these secret security patches by analyzing the source code and generate corresponding exploits to compromise not only unpatch



قيم البحث

اقرأ أيضاً

Currently, Android malware detection is mostly performed on server side against the increasing number of malware. Powerful computing resource provides more exhaustive protection for app markets than maintaining detection by a single user. However, ap art from the applications provided by the official market, apps from unofficial markets and third-party resources are always causing serious security threats to end-users. Meanwhile, it is a time-consuming task if the app is downloaded first and then uploaded to the server side for detection, because the network transmission has a lot of overhead. In addition, the uploading process also suffers from the security threats of attackers. Consequently, a last line of defense on mobile devices is necessary and much-needed. In this paper, we propose an effective Android malware detection system, MobiTive, leveraging customized deep neural networks to provide a real-time and responsive detection environment on mobile devices. MobiTive is a preinstalled solution rather than an app scanning and monitoring engine using after installation, which is more practical and secure. Original deep learning models cannot be directly deployed and executed on mobile devices due to various performance limitations, such as computation power, memory size, and energy. Therefore, we evaluate and investigate the following key points:(1) the performance of different feature extraction methods based on source code or binary code;(2) the performance of different feature type selections for deep learning on mobile devices;(3) the detection accuracy of different deep neural networks on mobile devices;(4) the real-time detection performance and accuracy on different mobile devices;(5) the potential based on the evolution trend of mobile devices specifications; and finally we further propose a practical solution (MobiTive) to detect Android malware on mobile devices.
Knowledge flow analysis offers a simple and flexible way to find flaws in security protocols. A protocol is described by a collection of rules constraining the propagation of knowledge amongst principals. Because this characterization corresponds clo sely to informal descriptions of protocols, it allows a succinct and natural formalization; because it abstracts away message ordering, and handles communications between principals and applications of cryptographic primitives uniformly, it is readily represented in a standard logic. A generic framework in the Alloy modelling language is presented, and instantiated for two standard protocols, and a new key management scheme.
Diagnostic data such as logs and memory dumps from production systems are often shared with development teams to do root cause analysis of system crashes. Invariably such diagnostic data contains sensitive information and sharing it can lead to data leaks. To handle this problem we present Knowledge and Learning-based Adaptable System for Sensitive InFormation Identification and Handling (KLASSIFI) which is an end to end system capable of identifying and redacting sensitive information present in diagnostic data. KLASSIFI is highly customizable, allowing it to be used for various different business use cases by simply changing the configuration. KLASSIFI ensures that the output file is useful by retaining the metadata which is used by various debugging tools. Various optimizations have been done to improve the performance of KLASSIFI. Empirical evaluation of KLASSIFI shows that it is able to process large files (128 GB) in 84 minutes and its performance scales linearly with varying factors. This points to practicability of KLASSIFI
Automatic patch generation can significantly reduce the window of exposure after a vulnerability is disclosed. Towards this goal, a long-standing problem has been that of patch localization: to find a program point at which a patch can be synthesized . We present PatchLoc, one of the first systems which automatically identifies such a location in a vulnerable binary, given just one exploit, with high accuracy. PatchLoc does not make any assumptions about the availability of source code, test suites, or specialized knowledge of the vulnerability. PatchLoc pinpoints valid patch locations in large real-world applications with high accuracy for about 88% of 43 CVEs we study. These results stem from a novel approach to automatically synthesizing a test-suite which enables probabilistically ranking and effectively differentiating between candidate program patch locations.
Software defined networking (SDN) has been adopted to enforce the security of large-scale and complex networks because of its programmable, abstract, centralized intelligent control and global and real-time traffic view. However, the current SDN-base d security enforcement mechanisms require network managers to fully understand the underlying configurations of network. Facing the increasingly complex and huge SDN networks, we urgently need a novel security policy management mechanism which can be completely transparent to any underlying information. That is it can permit network managers to define upper-level security policies without containing any underlying information of network, and by means of model transformation system, these upper-level security policies can be transformed into their corresponding lower-level policies containing underlying information automatically. Moreover, it should ensure system model updated by the generated lower-level policies can hold all of security properties defined in upper-level policies. Based on these insights, we propose a security policy model transformation and verification approach for SDN in this paper. We first present the formal definition of a security policy model (SPM) which can be used to specify the security policies used in SDN. Then, we propose a model transformation system based on SDN system model and mapping rules, which can enable network managers to convert SPM model into corresponding underlying network configuration policies automatically, i.e., flow table model (FTM). In order to verify SDN system model updated by the generated FTM models can hold the security properties defined in SPM models, we design a security policy verification system based on model checking. Finally, we utilize a comprehensive case to illustrate the feasibility of the proposed approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا