ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral and Timing Analysis of NuSTAR and Swift/XRT Observations of the X-Ray Transient MAXI J0637-430

138   0   0.0 ( 0 )
 نشر من قبل Hadar Lazar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results for the first observed outburst from the transient X-ray binary source MAXI J0637-430. This study is based on eight observations from the Nuclear Spectroscopic Telescope Array (NuSTAR) and six observations from the Neil Gehrels Swift Observatory X-Ray Telescope (Swift/XRT) collected from 2019 November 19 to 2020 April 26 as the 3-79 keV source flux declined from 8.2e-10 to 1.4e-12 erg/cm^2/s. We see the source transition from a soft state with a strong disk-blackbody component to a hard state dominated by a power-law or thermal Comptonization component. NuSTAR provides the first reported coverage of MAXI J0637-430 above 10 keV, and these broadband spectra show that a two-component model does not provide an adequate description of the soft state spectrum. As such, we test whether blackbody emission from the plunging region could explain the excess emission. As an alternative, we test a reflection model that includes a physical Comptonization continuum. Finally, we also invoke a spectral component based on reflection of blackbody returning radiation due to the bending of light by the strong gravity of the black hole. We discuss the physical implications of each scenario and demonstrate the value of constraining the source distance.

قيم البحث

اقرأ أيضاً

We present detailed timing and spectral studies of the black hole candidate MAXI J0637$-$430 during its 2019-2020 outburst using observations with the {em Neutron Star Interior Composition Explorer (NICER)} and the {em Neil Gehrels Swift Observatory} . We find that the source evolves through the soft-intermediate, high-soft, hard-intermediate and low-hard states during the outburst. No evidence of quasi-periodic oscillations is found in the power density spectra of the source. Weak variability with fractional rms amplitude $<5%$ is found in the softer spectral states. In the hard-intermediate and hard states, high variability with the fractional rms amplitude of $>20%$ is observed. The $0.7-10$ keV spectra with {em NICER} are studied with a combined disk-blackbody and nthcomp model along with the interstellar absorption. The temperature of the disc is estimated to be $0.6$ keV in the rising phase and decreased slowly to $0.1$ keV in the declining phase. The disc component was not detectable or absent during the low hard state. From the state-transition luminosity and the inner edge of the accretion flow, we estimate the mass of the black hole to be in the range of 5$-$12 $M_{odot}$, assuming the source distance of $d<10$ kpc.
We report on the spectral evolution of a new X-ray transient, MAXI J0556-332, observed by MAXI, Swift, and RXTE. The source was discovered on 2011 January 11 (MJD=55572) by MAXI Gas Slit Camera all-sky survey at (l,b)=(238.9deg, -25.2deg), relatively away from the Galactic plane. Swift/XRT follow-up observations identified it with a previously uncatalogued bright X-ray source and led to optical identification. For more than one year since its appearance, MAXI J0556-332 has been X-ray active, with a 2-10 keV intensity above 30 mCrab. The MAXI/GSC data revealed rapid X-ray brightening in the first five days, and a hard-to-soft transition in the meantime. For the following ~ 70 days, the 0.5-30 keV spectra, obtained by the Swift/XRT and the RXTE/PCA on an almost daily basis, show a gradual hardening, with large flux variability. These spectra are approximated by a cutoff power-law with a photon index of 0.4-1 and a high-energy exponential cutoff at 1.5-5 keV, throughout the initial 10 months where the spectral evolution is mainly represented by a change of the cutoff energy. To be more physical, the spectra are consistently explained by thermal emission from an accretion disk plus a Comptonized emission from a boundary layer around a neutron star. This supports the source identification as a neutron-star X-ray binary. The obtained spectral parameters agree with those of neutron-star X-ray binaries in the soft state, whose luminosity is higher than 1.8x10^37 erg s^-1. This suggests a source distance of >17 kpc.
Monitor of All sky X-ray Image (MAXI) discovered a new outburst of an X-ray transient source named MAXI J1421-613. Because of the detection of three X-ray bursts from the source, it was identified as a neutron star low-mass X-ray binary. The results of data analyses of the MAXI GSC and the Swift XRT follow-up observations suggest that the spectral hardness remained unchanged during the first two weeks of the outburst. All the XRT spectra in the 0.5-10 keV band can be well explained by thermal Comptonization of multi-color disk blackbody emission. The photon index of the Comptonized component is $approx$ 2, which is typical of low-mass X-ray binaries in the low/hard state. Since X-ray bursts have a maximum peak luminosity, it is possible to estimate the (maximum) distance from its observed peak flux. The peak flux of the second X-ray burst, which was observed by the GSC, is about 5 photons cm$^{-2}$ s$^{-1}$. By assuming a blackbody spectrum of 2.5 keV, the maximum distance to the source is estimated as 7 kpc. The position of this source is contained by the large error regions of two bright X-ray sources detected with Orbiting Solar Observatory-7 (OSO-7) in 1970s. Besides this, no past activities at the XRT position are reported in the literature. If MAXI J1421-613 is the same source as (one of) them, the outburst observed with MAXI may have occurred after the quiescence of 30-40 years.
We report on X-ray spectral and timing results of the new black hole candidate (BHC) MAXI J1659-152 with the orbital period of 2.41 hours (shortest among BHCs) in the 2010 outburst from 65 Rossi X-ray Timing Explorer (RXTE) observations and 8 simulta neous Swift and RXTE observations. According to the definitions of the spectral states in Remillard & McClintock (2006), most of the observations have been classified into the intermediate state. All the X-ray broadband spectra can be modeled by a multi-color disk plus a power-law with an exponential cutoff or a multi-color disk plus a Comptonization component. During the initial phase of the outburst, a high energy cutoff was visible at 30-40 keV. The innermost radius of the disk gradually decreased by a factor of more than 3 from the onset of the outburst and reached a constant value of 35 d_10 cos i^-1/2 km, where d_10 is the distance in units of 10 kpc and $i$ is the inclination. The type-C quasi-periodic oscillation (QPO) frequency varied from 1.6 Hz to 7.3 Hz in association with a change of the innermost radius, while the innermost radius remained constant during the type-B QPO detections at 1.6-4.1 Hz. Hence, we suggest that the origin of the type-B QPOs is different from that of type-C QPOs, the latter of which would originate from the disk truncation radius. Assuming the constant innermost radius in the latter phase of the outburst as the innermost stable circular orbit, the black hole mass in MAXI J1659-152 is estimated to be 3.6-8.0 M_solar for a distance of 5.3-8.6 kpc and an inclination angle of 60-75 degrees.
The results of the broadband spectral and timing study of the recently discovered transient X-ray pulsar MAXI J0903-531 in a wide range of luminosities differing by a factor of ~30 are reported. The observed X-ray spectrum in both states can be descr ibed as a classical pulsar-like spectrum consisting of the power-law with the high-energy cutoff. We argue that absence of the spectrum transformation to the two-hump structure expected at low fluxes points to a relatively weak magnetic field of the neutron star below (2-3)$times10^{12}$ G. This estimate is consistent with other indirect constraints and non-detection of any absorption features which can be interpreted as a cyclotron absorption line. Timing analysis of the NuSTAR data revealed only slight variations of a single-peaked pulse profile of the source as a function of the energy band and mass accretion rate. In both intensity states the pulsed fraction increases from 40% to roughly 80% with the energy. Finally we were also able to obtain the orbital solution for the binary system using data from the Fermi/GBM, NICER and NuSTAR instruments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا