ترغب بنشر مسار تعليمي؟ اضغط هنا

From Efimov Physics to the Bose Polaron using Gaussian States

64   0   0.0 ( 0 )
 نشر من قبل Arthur Christianen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since the Efimov effect was introduced in 1970, a detailed theoretical understanding of Efimov physics has been developed in the few-body context. However, it has proven to be challenging to describe the role Efimov-type correlations play in many-body systems such as quenched or collapsing Bose-Einstein condensates (BECs). To study the impact the Efimov effect can have in such scenarios, we consider a light impurity immersed in a weakly interacting BEC, forming a Bose polaron. In this case, the higher-order correlations are localized around the impurity, making it more feasible to develop a theoretical description. Specifically, we employ a Gaussian state variational Ansatz in the reference frame of the impurity, capable of both capturing the Efimov effect and the formation of the polaron cloud. We find that the Efimov effect leads to a cooperative binding of bosons to the impurity and the formation of a many-body bound state. As a result, the polaron is not the ground state, but rendered a metastable excited state which can decay into these Efimov clusters. While this decay is slow for small interaction strengths, it becomes more prominent as the attractive scattering length increases, up to the point where the polaron becomes completely unstable. This critical scattering length can be interpreted as a many-body shifted Efimov resonance, where the scattering of two excitations of the bath with the polaron can lead to bound state formation. Compared to the few-body case, the resonance is shifted to smaller attractive scattering lengths due to the participation of the polaron cloud in the cooperative binding process. This corresponds to an intriguing scenario of polaron-assisted chemistry, where many-body effects lead to enhanced signal of the chemical recombination process, which can be directly probed in state-of-the-art experiments.

قيم البحث

اقرأ أيضاً

We convert a strongly interacting ultracold Bose gas into a mixture of atoms and molecules by sweeping the interactions from resonant to weak. By analyzing the decay dynamics of the molecular gas, we show that in addition to Feshbach dimers it contai ns Efimov trimers. Typically around 8% of the total atomic population is bound into trimers, identified by their density-independent lifetime of about 100~$mu$s. The lifetime of the Feshbach dimers shows a density dependence due to inelastic atom-dimer collisions, in agreement with theoretical calculations. We also vary the density of the gas across a factor of 250 and investigate the corresponding atom loss rate at the interaction resonance.
Efimov states are a sequence of shallow three-body bound states that arise when the two-body scattering length is much larger than the range of the interaction. The binding energies of these states are described as a function of the scattering length and one three-body parameter by a transcendental equation involving a universal function of one angular variable. We provide an accurate and convenient parametrization of this function. Moreover, we discuss the effective treatment of range corrections in the universal equation and compare with a strictly perturbative scheme.
Recently, two independent experiments reported the observation of long-lived polarons in a Bose-Einstein condensate, providing an excellent setting to study the generic scenario of a mobile impurity interacting with a quantum reservoir. Here, we expa nd the experimental analysis by disentangling the effects of trap inhomogeneities and the many-body continuum in one of these experiments. This makes it possible to extract the energy of the polaron at a well-defined density as a function of the interaction strength. Comparisons with quantum Monte-Carlo as well as diagrammatic calculations show good agreement, and provide a more detailed picture of the polaron properties at stronger interactions than previously possible. Moreover, we develop a semi-classical theory for the motional dynamics and three-body loss of the polarons, which partly explains a previously unresolved discrepancy between theory and experimental observations for repulsive interactions. Finally, we utilize quantum Monte-Carlo calculations to demonstrate that the findings reported in the two experiments are consistent with each other.
The presence of strong interactions in a many-body quantum system can lead to a variety of exotic effects. Here we show that even in a comparatively simple setup consisting of a charged impurity in a weakly interacting bosonic medium the competition of length scales gives rise to a highly correlated mesoscopic state. Using quantum Monte Carlo simulations, we unravel its vastly different polaronic properties compared to neutral quantum impurities. Moreover, we identify a transition between the regime amenable to conventional perturbative treatment in the limit of weak atom-ion interactions and a many-body bound state with vanishing quasi-particle residue composed of hundreds of atoms. In order to analyze the structure of the corresponding states we examine the atom-ion and atom-atom correlation functions which both show nontrivial properties. Our findings are directly relevant to experiments using hybrid atom-ion setups that have recently attained the ultracold regime.
Universal behaviour has been found inside the window of Efimov physics for systems with $N=4,5,6$ particles. Efimov physics refers to the emergence of a number of three-body states in systems of identical bosons interacting {it via} a short-range int eraction becoming infinite at the verge of binding two particles. These Efimov states display a discrete scale invariance symmetry, with the scaling factor independent of the microscopic interaction. Their energies in the limit of zero-range interaction can be parametrized, as a function of the scattering length, by a universal function. We have found, using a particular form of finite-range scaling, that the same universal function can be used to parametrize the energies of $Nle6$ systems inside the Efimov-physics window. Moreover, we show that the same finite-scale analysis reconciles experimental measurements of three-body binding energies with the universal theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا