ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved $Lambda p$ Elastic Scattering Cross Sections Between 0.9 and 2.0 GeV/c and Connections to the Neutron Star Equation of State

284   0   0.0 ( 0 )
 نشر من قبل Kenneth Hicks
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Strange matter is believed to exist in the cores of neutron stars based on simple kinematics. If this is true, then hyperon-nucleon interactions will play a significant part in the neutron star equation of state (EOS). Yet, compared to other elastic scattering processes, there is very little data on $Lambda$-$N$ scattering. This experiment utilized the CLAS detector to study the $Lambda p rightarrow Lambda p$ elastic scattering cross section in the incident $Lambda$ momentum range 0.9-2.0 GeV/c. This is the first data on this reaction in several decades. The new cross sections have significantly better accuracy and precision than the existing world data, and the techniques developed here can also be used in future experiments.



قيم البحث

اقرأ أيضاً

This paper presents measurements of production cross sections and inelastic cross sections for the following reactions: 60 GeV/$c$ protons with C, Be, Al targets and 120 GeV/$c$ protons with C and Be targets. The analysis was performed using the NA61 /SHINE spectrometer at the CERN SPS. First measurements were obtained using protons at 120 GeV/$c$, while the results for protons at 60 GeV/$c$ were compared with previously published measurements. These interaction cross section measurements are critical inputs for neutrino flux prediction in current and future accelerator-based long-baseline neutrino experiments.
Inclusive production of $Lambda$-hyperons was measured with the large acceptance NA61/SHINE spectrometer at the CERN SPS in inelastic p+p interactions at beam momentum of 158~GeVc. Spectra of transverse momentum and transverse mass as well as distrib utions of rapidity and x$_{_F}$ are presented. The mean multiplicity was estimated to be $0.120,pm0.006;(stat.),pm 0.010;(sys.)$. The results are compared with previous measurements and predictions of the EPOS, UrQMD and FRITIOF models.
We report results on the total and elastic cross sections in proton-proton collisions at $sqrt{s}=200$ GeV obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section was measured in the squared four-momentum transfer range $0.045 leq -t leq 0.135$ GeV$^2$. The value of the exponential slope parameter $B$ of the elastic differential cross section $dsigma/dt sim e^{-Bt}$ in the measured $-t$ range was found to be $B = 14.32 pm 0.09 (stat.)^{scriptstyle +0.13}_{scriptstyle -0.28} (syst.)$ GeV$^{-2}$. The total cross section $sigma_{tot}$, obtained from extrapolation of the $dsigma/dt$ to the optical point at $-t = 0$, is $sigma_{tot} = 54.67 pm 0.21 (stat.) ^{scriptstyle +1.28}_{scriptstyle -1.38} (syst.)$ mb. We also present the values of the elastic cross section $sigma_{el} = 10.85 pm 0.03 (stat.) ^{scriptstyle +0.49}_{scriptstyle -0.41}(syst.)$ mb, the elastic cross section integrated within the STAR $t$-range $sigma^{det}_{el} = 4.05 pm 0.01 (stat.) ^{scriptstyle+0.18}_{scriptstyle -0.17}(syst.)$ mb, and the inelastic cross section $sigma_{inel} = 43.82 pm 0.21 (stat.) ^{scriptstyle +1.37}_{scriptstyle -1.44} (syst.)$ mb. The results are compared with the world data.
A parameterization of the $bar pp$ differential elastic scattering cross section in the beam momentum range from 2 to 16 GeV/c is proposed. The parameterization well describes the existing data including the observed diffraction pattern at four-momen tum transfer $|t|$ up to 1.5-2.0 GeV$^2$. It can be used for detailed calculations of the radiation load on the detectors being designed for the PANDA detector at the future FAIR facility in Darmstadt.
Unpolarized cross sections and double-helicity asymmetries of single-inclusive positive and negative charged hadrons at midrapidity from p+p collisions at sqrt(s)=62.4 GeV are presented. The PHENIX measurements for 1.0 < p_T < 4.5 GeV/c are consisten t with perturbative QCD calculations at next-to-leading order in the strong coupling constant, alpha_s. Resummed pQCD calculations including terms with next-to-leading-log accuracy, yielding reduced theoretical uncertainties, also agree with the data. The double-helicity asymmetry, sensitive at leading order to the gluon polarization in a momentum-fraction range of 0.05 ~< x_gluon ~< 0.2, is consistent with recent global parameterizations disfavoring large gluon polarization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا