ﻻ يوجد ملخص باللغة العربية
We implement extraction of Coq programs to functional languages based on MetaCoqs certified erasure. We extend the MetaCoq erasure output language with typing information and use it as an intermediate representation, which we call $lambda^T_square$. We complement the extraction functionality with a full pipeline that includes several standard transformations (eta-expansion, inlining, etc) implemented in a proof-generating manner along with a verified optimisation pass removing unused arguments. We prove the pass correct wrt. a conventional call-by-value operational semantics of functional languages. From the optimised $lambda^T_square$ representation, we obtain code in two functional smart contract languages (Liquidity and CameLIGO), the functional language Elm, and a subset of the multi-paradigm language for systems programming Rust. Rust is currently gaining popularity as a language for smart contracts, and we demonstrate how our extraction can be used to extract smart contract code for the Concordium network. The development is done in the context of the ConCert framework that enables smart contract verification. We contribute with two verified real-world smart contracts (boardroom voting and escrow), which we use, among other examples, to exemplify the applicability of the pipeline. In addition, we develop a verified web application and extract it to fully functional Elm code. In total, this gives us a way to write dependently typed programs in Coq, verify, and then extract them to several target languages while retaining a small trusted computing base of only MetaCoq and the pretty-printers into these languages.
We implement extraction of Coq programs to functional languages based on MetaCoqs certified erasure. As part of this, we implement an optimisation pass removing unused arguments. We prove the pass correct wrt. a conventional call-by-value operational
A quantum circuit is a computational unit that transforms an input quantum state to an output one. A natural way to reason about its behavior is to compute explicitly the unitary matrix implemented by it. However, when the number of qubits increases,
We present a new way of embedding functional languages into the Coq proof assistant by using meta-programming. This allows us to develop the meta-theory of the language using the deep embedding and provides a convenient way for reasoning about concre
We study termination of higher-order probabilistic functional programs with recursion, stochastic conditioning and sampling from continuous distributions. Reasoning about the termination probability of programs with continuous distributions is hard
Naming conventions are an important concern in large verification projects using proof assistants, such as Coq. In particular, lemma names are used by proof engineers to effectively understand and modify Coq code. However, providing accurate and info