ترغب بنشر مسار تعليمي؟ اضغط هنا

Threshold Upsilon-meson Photoproduction at EIC and EicC

96   0   0.0 ( 0 )
 نشر من قبل Igor Strakovsky
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

High-accuracy $Upsilon$-meson photoproduction data from EIC and EicC experiments will allow the measurement of the near-threshold total cross section of the reaction $gamma ptoUpsilon p$, from which the absolute value of the $Upsilon p$ scattering length, $|alpha_{Upsilon p}|$, can be extracted using a Vector-Meson Dominance model. For this evaluation, we used $Upsilon$-meson photoproduction quasi-data from the QCD approach (the production amplitude can be factorized in terms of gluonic generalized parton distributions and the quarkonium distribution amplitude). A comparative analysis of $|alpha_{Upsilon p}|$ with the recently determined scattering lengths for $omega p$, $phi p$, and $J/psi p$ using the A2, CLAS, and GlueX experimental data are performed. The role of the young vector-meson effect is evaluated.



قيم البحث

اقرأ أيضاً

78 - V. Guzey , M. Klasen 2020
We present a first, detailed study of diffractive dijet photoproduction at the recently approved electron-ion collider (EIC) at BNL. Apart from establishing the kinematic reaches for various beam types, energies and kinematic cuts, we make precise pr edictions at next-to-leading order (NLO) of QCD in the most important kinematic variables. We show that the EIC will provide new and more precise information on the diffractive parton density functions (PDFs) in the pomeron than previously obtained at HERA, illuminate the still disputed mechanism of global vs. only resolved-photon factorization breaking, and provide access to a completely new quantity, i.e. nuclear diffractive PDFs.
78 - V. Guzey , M. Klasen 2021
We discuss the prospects of diffractive dijet photoproduction at the EIC to distinguish different fits of diffractive proton PDFs, different schemes of factorization breaking, to determine diffractive nuclear PDFs and pion PDFs from leading neutron production.
We study the inclusive J/psi production at large transverse momenta at lepton-hadron colliders in the limit when the exchange photon is quasi real, also referred to as photoproduction. Our computation includes the leading-P_T leading-v next-to-leadin g alpha_s corrections. In particular, we consider the contribution from J/psi plus another charm quark, by employing for the first time in quarkonium photoproduction the variable-flavour-number scheme. We also include a QED-induced contribution via an off-shell photon which remained ignored in the literature and which we show to be the leading contribution at high P_T within the reach of the EIC. In turn, we use our computation of J/psi+charm to demonstrate its observability at the future EIC and the EIC sensitivity to probe the non-perturbative charm content of the proton at high x.
We study inclusive $J/psi$ photoproduction at NLO at large $P_T$ at HERA and the EIC. Our computation includes NLO QCD leading-$P_T$ corrections, QED contributions via an off-shell photon as well as those from $J/psi$+charm channels. For the latter, we employ the variable-flavour-number scheme. Our results are found to agree with the latest HERA data by H1 and provide, for the first time, a reliable estimate of the EIC reach for such a measurement. Finally, we demonstrate the observability of $J/psi$+charm production and the sensitivy to probe the non-perturbative charm content of the proton at high $x$, also known as intrinsic charm, at the EIC.
Using the Gribov-Glauber model for photon-nucleus scattering and a generalization of the vector meson dominance model for the hadronic structure of the photon, we make predictions for the cross section of incoherent $rho$ photoproduction in Pb-Pb ult raperipheral collisions (UPCs) in the Large Hadron Collider kinematics. We find that the effect of the inelastic nuclear shadowing is significant and leads to an additional 25% suppression of the incoherent cross section. Comparing our predictions to those of the STARlight Monte Carlo framework, we observe very significant differences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا