ﻻ يوجد ملخص باللغة العربية
To realize effective heterogeneous multi-robot teams, researchers must leverage individual robots relative strengths and coordinate their individual behaviors. Specifically, heterogeneous multi-robot systems must answer three important questions: textit{who} (task allocation), textit{when} (scheduling), and textit{how} (motion planning). While specific variants of each of these problems are known to be NP-Hard, their interdependence only exacerbates the challenges involved in solving them together. In this paper, we present a novel framework that interleaves task allocation, scheduling, and motion planning. We introduce a search-based approach for trait-based time-extended task allocation named Incremental Task Allocation Graph Search (ITAGS). In contrast to approaches that solve the three problems in sequence, ITAGSs interleaved approach enables efficient search for allocations while simultaneously satisfying scheduling constraints and accounting for the time taken to execute motion plans. To enable effective interleaving, we develop a convex combination of two search heuristics that optimizes the satisfaction of task requirements as well as the makespan of the associated schedule. We demonstrate the efficacy of ITAGS using detailed ablation studies and comparisons against two state-of-the-art algorithms in a simulated emergency response domain.
Efficient utilization of cooperating robots in the assembly of aircraft structures relies on balancing the workload of the robots and ensuring collision-free scheduling. We cast this problem as that of allocating a large number of repetitive assembly
We consider multi-agent transport task problems where, e.g. in a factory setting, items have to be delivered from a given start to a goal pose while the delivering robots need to avoid collisions with each other on the floor. We introduce a Task Conf
In this paper, we consider the network power minimization problem in a downlink cloud radio access network (C-RAN), taking into account the power consumed at the baseband unit (BBU) for computation and the power consumed at the remote radio heads and
The presence and coexistence of human operators and collaborative robots in shop-floor environments raises the need for assigning tasks to either operators or robots, or both. Depending on task characteristics, operator capabilities and the involved
With the development of federated learning (FL), mobile devices (MDs) are able to train their local models with private data and sends them to a central server for aggregation, thereby preventing sensitive raw data leakage. In this paper, we aim to i