ترغب بنشر مسار تعليمي؟ اضغط هنا

The final fates of close hot subdwarf - white dwarf binaries: mergers involving He/C/O white dwarfs and the formation of unusual giant stars with C/O-dominated envelopes

56   0   0.0 ( 0 )
 نشر من قبل Josiah Schwab
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, a class of Roche-lobe-filling binary systems consisting of hot subdwarf stars and white dwarfs with sub-hour periods has been discovered. At present, the hot subdwarf is in a shell He burning phase and is transferring some of its remaining thin H envelope to its white dwarf companion. As the evolution of the hot subdwarf continues, it is expected to detach, leaving behind a low mass C/O core white dwarf secondary with a thick He layer. Then, on a timescale of $sim 10$ Myr, gravitational wave radiation will again bring the systems into contact. If the mass transfer is unstable and results in a merger and a catastrophic thermonuclear explosion is not triggered, it creates a remnant with a C/O-dominated envelope, but one still rich enough in He to support an R Corona Borealis-like shell burning phase. We present evolutionary calculations of this phase and discuss its potential impact on the cooling of the remnant white dwarf.

قيم البحث

اقرأ أيضاً

95 - S. Geier , T. Kupfer , U. Heber 2015
Hot subdwarfs (sdBs) are core helium-burning stars, which lost almost their entire hydrogen envelope in the red-giant phase. Since a high fraction of those stars are in close binary systems, common envelope ejection is an important formation channel. We identified a total population of 51 close sdB+WD binaries based on time-resolved spectroscopy and multi-band photometry, derive the WD mass distribution and constrain the future evolution of these systems. Most WDs in those binaries have masses significantly below the average mass of single WDs and a high fraction of them might therefore have helium cores. We found 12 systems that will merge in less than a Hubble time and evolve to become either massive C/O WDs, AM,CVn systems, RCrB stars or even explode as supernovae type Ia.
The lower limit for the mass of white dwarfs (WDs) with C-O core is commonly assumed to be roughly 0.5 Msun. As a consequence, WDs of lower masses are usually identified as He-core remnants. However, when the initial mass of the progenitor star is in between 1.8 and 3 Msun, which corresponds to the so called red giant (RGB) phase transition, the mass of the H-exhausted core at the tip of the RGB is 0.3 < M_H/Msun < 0.5. Prompted by this well known result of stellar evolution theory, we investigate the possibility to form C-O WDs with mass M < 0.5 Msun. The pre-WD evolution of stars with initial mass of about 2.3 Msun, undergoing anomalous mass-loss episodes during the RGB phase and leading to the formation of WDs with He-rich or CO-rich cores have been computed. The cooling sequences of the resulting WDs are also described. We show that the minimum mass for a C-O WD is about 0.33 Msun, so that both He and C-O core WDs can exist in the mass range 0.33-0.5 Msun. The models computed for the present paper provide the theoretical tools to indentify the observational counterpart of very low mass remnants with a C-O core among those commonly ascribed to the He-core WD population in the progressively growing sample of observed WDs of low mass. Moreover, we show that the central He-burning phase of the stripped progeny of the 2.3 Msun star lasts longer and longer as the total mass decreases. In particular, the M= 0.33 Msun model takes about 800 Myr to exhausts its central helium, which is more than three time longer than the value of the standard 2.3 Msun star: it is, by far, the longest core-He burning lifetime. Finally, we find the occurrence of gravonuclear instabilities during the He-burning shell phase.
267 - Pavel Denissenkov 2014
When carbon is ignited off-center in a CO core of a super-AGB star, its burning in a convective shell tends to propagate to the center. Whether the C flame will actually be able to reach the center depends on the efficiency of extra mixing beneath th e C convective shell. Whereas thermohaline mixing is too inefficient to interfere with the C-flame propagation, convective boundary mixing can prevent the C burning from reaching the center. As a result, a C-O-Ne white dwarf (WD) is formed, after the star has lost its envelope. Such a hybrid WD has a small CO core surrounded by a thick ONe zone. In our 1D stellar evolution computations the hybrid WD is allowed to accrete C-rich material, as if it were in a close binary system and accreted H-rich material from its companion with a sufficiently high rate at which the accreted H would be processed into He under stationary conditions, assuming that He could then be transformed into C. When the mass of the accreting WD approaches the Chandrasekhar limit, we find a series of convective Urca shell flashes associated with high abundances of 23Na and 25Mg. They are followed by off-center C ignition leading to convection that occupies almost the entire star. To model the Urca processes, we use the most recent well-resolved data for their reaction and neutrino-energy loss rates. Because of the emphasized uncertainty of the convective Urca process in our hybrid WD models of SN Ia progenitors, we consider a number of their potentially possible alternative instances for different mixing assumptions, all of which reach a phase of explosive C ignition, either off or in the center. Our hybrid SN Ia progenitor models have much lower C to O abundance ratios at the moment of the explosive C ignition than their pure CO counterparts, which may explain the observed diversity of the SNe Ia.
Constraints from surveys of post common envelope binaries (PCEBs) consisting of a white dwarf plus an M-dwarf companion have led to significant progress in our understanding of the formation of close white dwarf binary stars with low-mass companions. The white dwarf binary pathways project aims at extending these previous surveys to larger secondary masses, i.e. secondary stars of spectral type AFGK. Here we present the discovery and observational characterization of three PCEBs with G-type secondary stars and orbital periods between 1.2 and 2.5 days. Using our own tools as well as MESA we estimate the evolutionary history of the binary stars and predict their future. We find a large range of possible evolutionary histories for all three systems and identify no indications for differences in common envelope evolution compared to PCEBs with lower mass secondary stars. Despite their similarities in orbital period and secondary spectral type, we estimate that the future of the three systems are very different: TYC 4962-1205-1 is a progenitor of a cataclysmic variable system with an evolved donor star, TYC 4700-815-1 will run into dynamically unstable mass transfer that will cause the two stars to merge, and TYC 1380-957-1 may appear as super soft source before becoming a rather typical cataclysmic variable star.
We report the discovery of an extremely close, eclipsing binary system. A white dwarf is orbited by a core He-burning compact hot subdwarf star with a period as short as $simeq0.04987 {rm d}$ making this system the most compact hot subdwarf binary di scovered so far. The subdwarf will start to transfer helium-rich material on short timescales of less than $50 {rm Myr}$. The ignition of He-burning at the surface may trigger carbon-burning in the core although the WD is less massive than the Chandrasekhar limit ($>0.74,M_{rm odot}$) making this binary a possible progenitor candidate for a supernova type Ia event.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا