ﻻ يوجد ملخص باللغة العربية
We propose TRANSMUT-Spark, a tool that automates the mutation testing process of Big Data processing code within Spark programs. Apache Spark is an engine for Big Data Processing. It hides the complexity inherent to Big Data parallel and distributed programming and processing through built-in functions, underlying parallel processes, and data management strategies. Nonetheless, programmers must cleverly combine these functions within programs and guide the engine to use the right data management strategies to exploit the large number of computational resources required by Big Data processing and avoid substantial production losses. Many programming details in data processing code within Spark programs are prone to false statements that need to be correctly and automatically tested. This paper explores the application of mutation testing in Spark programs, a fault-based testing technique that relies on fault simulation to evaluate and design test sets. The paper introduces the TRANSMUT-Spark solution for testing Spark programs. TRANSMUT-Spark automates the most laborious steps of the process and fully executes the mutation testing process. The paper describes how the tool automates the mutants generation, test execution, and adequacy analysis phases of mutation testing with TRANSMUT-Spark. It also discusses the results of experiments that were carried out to validate the tool to argue its scope and limitations.
The need for modern data analytics to combine relational, procedural, and map-reduce-style functional processing is widely recognized. State-of-the-art systems like Spark have added SQL front-ends and relational query optimization, which promise an i
The CERN IT provides a set of Hadoop clusters featuring more than 5 PBytes of raw storage with different open-source, user-level tools available for analytical purposes. The CMS experiment started collecting a large set of computing meta-data, e.g. d
Identifying the causal relationships between subjects or variables remains an important problem across various scientific fields. This is particularly important but challenging in complex systems, such as those involving human behavior, sociotechnica
Apache Spark is a Big Data framework for working on large distributed datasets. Although widely used in the industry, it remains rather limited in the academic community or often restricted to software engineers. The goal of this paper is to show wit
Distributed data processing ecosystems are widespread and their components are highly specialized, such that efficient interoperability is urgent. Recently, Apache Arrow was chosen by the community to serve as a format mediator, providing efficient i