ترغب بنشر مسار تعليمي؟ اضغط هنا

The maximum accreted mass of recycled pulsars

78   0   0.0 ( 0 )
 نشر من قبل Zhenwei Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The maximum mass of neutron stars (NSs) is of great importance for constraining equations of state of NSs and understanding the mass gap between NSs and stellar-mass black holes. NSs in X-ray binaries would increase in mass by accreting material from their companions (known as recycling process), and the uncertainties in the accretion process give challenge to study the NS mass at birth. {In this work, we investigate the NS accreted mass with considering the effect of NS spin evolution and give the maximum accreted mass for NSs in the recycling process. By exploring a series of binary evolution calculations, we obtain the final NS mass and the maximum accreted mass for a given birth mass of NS and a mass transfer efficiency. Our results show that the NSs can accrete relatively more material for binary systems with the donor masses in the range of $1.8sim 2.4M_odot$, the NSs accrete relatively more mass when the remnant WD mass is in the range of $sim 0.25-0.30M_odot$, and the maximum accreted mass is positively correlated with the initial NS mass. For a $1.4M_odot$ NS at birth with a moderate mass transfer efficiency of 0.3, the maximum accreted mass could be $0.27M_odot$. The results can be used to estimate the minimum birth mass for systems with massive NSs in observations.



قيم البحث

اقرأ أيضاً

Recycled pulsars are old ($gtrsim10^{8}$ yr) neutron stars that are descendants from close, interacting stellar systems. In order to understand their evolution and population, we must find and study the largest number possible of recycled pulsars in a way that is as unbiased as possible. In this work, we present the discovery and timing solutions of five recycled pulsars in binary systems (PSRs J0509$+$0856, J0709$+$0458, J0732$+$2314, J0824$+$0028, J2204$+$2700) and one isolated millisecond pulsar (PSR J0154$+$1833). These were found in data from the Arecibo 327-MHz Drift-Scan Pulsar Survey (AO327). All these pulsars have a low dispersion measure (DM) ($lesssim 45 , rm{pc}, cm^{-3}$), and have a DM-determined distance of $lesssim$ 3 kpc. Their timing solutions, have data spans ranging from 1 to $sim$ 7 years, include precise estimates of their spin and astrometric parameters, and for the binaries, precise estimates of their Keplerian binary parameters. Their orbital periods range from about 4 to 815 days and the minimum companion masses (assuming a pulsar mass of 1.4 $rm{M_{odot}}$) range from $sim$ 0.06--1.11 $rm{M_{odot}}$. For two of the binaries we detect post-Keplerian parameters; in the case of PSR~J0709$+$0458 we measure the component masses but with a low precision, in the not too distant future the measurement of the rate of advance of periastron and the Shapiro delay will allow very precise mass measurements for this system. Like several other systems found in the AO327 data, PSRs J0509$+$0854, J0709$+$0458 and J0732$+$2314 are now part of the NANOGrav timing array for gravitational wave detection.
We report the discovery and the results of follow-up timing observations of PSR J2045+3633 and PSR J2053+4650, two binary pulsars found in the Northern High Time Resolution Universe pulsar survey being carried out with the Effelsberg radio telescope. Having spin periods of 31.7 ms and 12.6 ms respectively, and both with massive white dwarf companions, $M_{c}, > , 0.8, M_{odot}$, the pulsars can be classified as mildly recycled. PSR J2045+3633 is remarkable due to its orbital period (32.3 days) and eccentricity $e, = , 0.01721244(5)$ which is among the largest ever measured for this class. After almost two years of timing the large eccentricity has allowed the measurement of the rate of advance of periastron at the 5-$sigma$ level, 0.0010(2)$^circ~rm yr^{-1}$. Combining this with a detection of the orthometric amplitude of the Shapiro delay, we obtained the following constraints on the component masses (within general relativity): $M_{p}, = , 1.33^{+0.30}_{-0.28}, M_{odot}$, and $M_{c}, = , 0.94^{+0.14}_{-0.13}, M_{odot}$. PSR J2053+4650 has a 2.45-day circular orbit inclined to the plane of the sky at an angle $i, = , 85.0^{+0.8}_{-0.9},{^circ}$. In this nearly edge-on case the masses can be obtained from the Shapiro delay alone. Our timing observations resulted in a significant detection of this effect giving: $M_{p}, = , 1.40^{+0.21}_{-0.18}, M_{odot}$, and $M_{c}, = , 0.86^{+0.07}_{-0.06}, M_{odot}$.
We present the results from the low-frequency (40--78 MHz) extension of the first LOFAR pulsar census of non-recycled pulsars. We have used the Low-Band Antennas of the LOFAR core stations to observe 87 pulsars out of 158 that have been detected prev iously with the High-Band Antennas. Forty-three pulsars have been detected and we present here their flux densities and flux-calibrated profiles. Seventeen of these pulsars have not been, to our knowledge, detected before at such low frequencies. We re-calculate the spectral indices using the new low-frequency flux density measurements from the LOFAR census and discuss the prospects of studying pulsars at the very low frequencies with the current and upcoming facilities, such as NenuFAR.
We have analyzed in this work the updated sample of neutron star masses derived from the study of a variety of 96 binary systems containing at least one neutron star using Bayesian methods. After updating the multimodality of the distributions found in previous works, we determined the maximum mass implied by the sample using a robust truncation technique, with the result $m_{max} sim 2.5-2.6 , M_{odot}$. We have checked that this mass is actually consistent by generating synthetic data and employing a Posterior Predictive Check. A comparison with seven published $m_{max}$ values inferred from the remnant of the NS-NS merger GW170817 was performed and the tension between the latter and the obtained $m_{max}$ value quantified. Finally, we performed a Local Outlier Factor test and verified that the result for $m_{max}$ encompasses the highest individual mass determinations with the possible exception of PSR J1748-2021B. The conclusion is that the whole distribution already points toward a high value of $m_{max}$, while several lower values derived from the NS-NS merger event are disfavored and incompatible with the higher binary system masses. A large $m_{max}$ naturally accommodates the lower mass component of the event GW190814 as a neutron star.
We present observations of fields containing eight recently discovered binary millisecond pulsars using the telescopes at MDM Observatory. Optical counterparts to four of these systems are detected, one of which, PSR J2214+3000, is a novel detection. Additionally, we present the fully phase-resolved B, V, and R light curves of the optical counterparts to two objects, PSR J1810+1744 and PSR J2215+5135 for which we employ model fitting using the ELC model of Orosz & Hauschildt (2000) to measure the unknown system parameters. For PSR J1810+1744 we find that the system parameters cannot be fit even assuming that 100% of the spin-down luminosity of the pulsar is irradiating the secondary, and so radial velocity measurements of this object will be required for the complete solution. However, PSR J2215+5135 exhibits light curves that are extremely well constrained using the ELC model and we find that the mass of the neutron star is constrained by these and the radio observations to be greater than 1.75 solar masses at the 3-sigma level. We also find a discrepancy between the model temperature and the measured colors of this object which we interpret as possible evidence for an additional high-temperature source such as a quiescent disk. Given this and the fact that PSR J2214+5135 contains a relatively high mass companion (greater than 0.1 solar masses), we propose that similar to the binary pulsar systems PSR J1023+0038 and IGR J18245-2452, the pulsar may transition between accretion- and rotation-powered modes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا