ﻻ يوجد ملخص باللغة العربية
In this article we perform ab initio calculations in order to assess the reactivity of ultracold RbSr ($^2Sigma^+$) $+$ RbSr ($^2Sigma^+$) collisions occurring on the singlet as well as the triplet potential. At ultracold energies reactions are energetically possible if they release energy, i.e., they are exoergic. The exoergicity of reactions between RbSr molecules producing diatomic molecules are known experimentally. We extend this to reactions producing triatomic molecules by calculating the binding energy of the triatomic reaction products. We find that, in addition to the formation of Rb$_2$ and Rb$_2$+Sr$_2$ in singlet collisions, also the formation of Sr$_2$Rb and Rb$_2$Sr molecules in both singlet and triplet collisions is exoergic. Hence, the formation of these reaction products is energetically possible in ultracold collisions. For all exoergic reactions the exoergicity is larger than 1000 cm$^{-1}$. We also find barrierless qualitative reaction paths leading to the formation of the Rb$_2$Sr, Sr$_2$Rb, and singlet Rb$_2$ reaction products. These reaction paths imply the existence of a qualitative reaction path with a submerged barrier for the creation of the singlet Rb$_2$+Sr$_2$ reaction product. Because of the existence of these reactions we expect ultracold RbSr collisions to result in almost universal loss even on the triplet potential. Our results can be contrasted with collisions between alkali diatoms, where the formation of triatomic reaction products is endoergic, and with collisions between ultracold SrF molecules, where during triplet collisions only the spin-forbidden formation of singlet SrF$_2$ is allowed.
We have studied the formation of ultracold RbSr molecules with laser pulses. After discussing the advantages of the Mott insulator phase for the control with pulses, we present two classes of strategies. The first class involves two electronic states
Ultracold paramagnetic and polar diatomic molecules are among the promising systems for quantum simulation of lattice-spin models. Unfortunately, their experimental observation is still challenging. Based on our recent textit{ab-initio} calculations,
Hybrid b-bar-gb molecules in which the heavy b-bar-b pair is bound together by the excited gluon field g are studied using the Born-Oppenheimer expansion and numerical simulations. The consistency of results from the two approaches reveals a simple a
We report calculation of the energy spectrum and the spectroscopic properties of the superheavy element ion: Rf^+. We use the 4-component relativistic Dirac-Coulomb Hamiltonian and the multireference configuration interaction (MRCI) model to tackle t
We present an accurate quantum mechanical study of molecule-molecule collisions in the presence of a magnetic field. The work focusses on the analysis of elastic scattering and spin relaxation in collisions of O2(3Sigma_g) molecules at cold (~0.1 K)