ﻻ يوجد ملخص باللغة العربية
Intra prediction is an essential component in the image coding. This paper gives an intra prediction framework completely based on neural network modes (NM). Each NM can be regarded as a regression from the neighboring reference blocks to the current coding block. (1) For variable block size, we utilize different network structures. For small blocks 4x4 and 8x8, fully connected networks are used, while for large blocks 16x16 and 32x32, convolutional neural networks are exploited. (2) For each prediction mode, we develop a specific pre-trained network to boost the regression accuracy. When integrating into HEVC test model, we can save 3.55%, 3.03% and 3.27% BD-rate for Y, U, V components compared with the anchor. As far as we know, this is the first work to explore a fully NM based framework for intra prediction, and we reach a better coding gain with a lower complexity compared with the previous work.
As a crucial part of video compression, intra prediction utilizes local information of images to eliminate the redundancy in spatial domain. In both H.265/HEVC and H.266/VVC, multiple directional prediction modes are employed to find the texture tren
Compressed Sensing MRI (CS-MRI) has shown promise in reconstructing under-sampled MR images, offering the potential to reduce scan times. Classical techniques minimize a regularized least-squares cost function using an expensive iterative optimizatio
The sparse LiDAR point clouds become more and more popular in various applications, e.g., the autonomous driving. However, for this type of data, there exists much under-explored space in the corresponding compression framework proposed by MPEG, i.e.
Since microRNAs (miRNAs) play a crucial role in post-transcriptional gene regulation, miRNA identification is one of the most essential problems in computational biology. miRNAs are usually short in length ranging between 20 and 23 base pairs. It is
Predicting the start-ups that will eventually succeed is essentially important for the venture capital business and worldwide policy makers, especially at an early stage such that rewards can possibly be exponential. Though various empirical studie