ترغب بنشر مسار تعليمي؟ اضغط هنا

Population-informed priors in gravitational-wave astronomy

98   0   0.0 ( 0 )
 نشر من قبل Christopher Moore
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a Bayesian formalism for analyzing individual gravitational-wave events in light of the rest of an observed population. This analysis reveals how the idea of a ``population-informed prior arises naturally from a suitable marginalization of an underlying hierarchical Bayesian model which consistently accounts for selection effects. Our formalism naturally leads to the presence of ``leave-one-out distributions which include subsets of events. This differs from other approximations, also known as empirical Bayes methods, which effectively double count one or more events. We design a double-reweighting post-processing strategy that uses only existing data products to reconstruct the resulting population-informed posterior distributions. Although the correction we highlight is an important conceptual point, we find it has a limited impact on the current catalog of gravitational-wave events. Our approach further allows us to study, for the first time in the gravitational-wave literature, correlations between the parameters of individual events and those of the population.



قيم البحث

اقرأ أيضاً

The emergent area of gravitational wave astronomy promises to provide revolutionary discoveries in the areas of astrophysics, cosmology, and fundamental physics. One of the most exciting possibilities is to use gravitational-wave observations to test alternative theories of gravity. In this contribution we describe how to use observations of extreme-mass-ratio inspirals by the future Laser Interferometer Space Antenna to test a particular class of theories: Chern-Simons modified gravity.
The detections of gravitational waves (GW) by LIGO/Virgo collaborations provide various possibilities to physics and astronomy. We are quite sure that GW observations will develop a lot both in precision and in number owing to the continuous works fo r the improvement of detectors, including the expectation to the newly joined detector, KAGRA, and the planned detector, LIGO-India. In this occasion, we review the fundamental outcomes and prospects of gravitational wave physics and astronomy. We survey the development focusing on representative sources of gravitational waves: binary black holes, binary neutron stars, and supernovae. We also summarize the role of gravitational wave observations as a probe of new physics.
169 - Laura Sampson , Neil Cornish , 2013
Waveform templates are a powerful tool for extracting and characterizing gravitational wave signals, acting as highly restrictive priors on the signal morphologies that allow us to extract weak events buried deep in the instrumental noise. The templa tes map the waveform shapes to physical parameters, thus allowing us to produce posterior probability distributions for these parameters. However, there are attendant dangers in using highly restrictive signal priors. If strong field gravity is not accurately described by General Relativity (GR), then using GR templates may result in fundamental bias in the recovered parameters, or even worse, a complete failure to detect signals. Here we study such dangers, concentrating on three distinct possibilities. First, we show that there exist modified theories compatible with all existing tests that would fail to be detected by the LIGO/Virgo network using searches based on GR templates, but which would be detected using a one parameter post-Einsteinian extension. Second, we study modified theories that produce departures from GR that turn on suddenly at a critical frequency, producing waveforms that do not naively fit into the simplest parameterized post-Einsteinian (ppE) scheme. We show that even the simplest ppE templates are still capable of picking up these strange signals and diagnosing a departure from GR. Third, we study whether using inspiral-only ppE waveforms for signals that include merger and ringdown can lead to problems in misidentifying a GR departure. We present an easy technique that allows us to self-consistently identify the inspiral portion of the signal, and thus remove these potential biases, allowing GR tests to be performed on higher mass signals that merge within the detector band. We close by studying a parameterized waveform model that may allow us to test GR using the full inspiral-merger-ringdown signal.
201 - Surajit Kalita 2021
Over the past couple of decades, researchers have predicted more than a dozen super-Chandrasekhar white dwarfs from the detections of over-luminous type Ia supernovae. It turns out that magnetic fields and rotation can explain such massive white dwar fs. If these rotating magnetized white dwarfs follow specific conditions, they can efficiently emit continuous gravitational waves and various futuristic detectors, viz. LISA, BBO, DECIGO, and ALIA can detect such gravitational waves with a significant signal-to-noise ratio. Moreover, we discuss various timescales over which these white dwarfs can emit dipole and quadrupole radiations and show that in the future, the gravitational wave detectors can directly detect the super-Chandrasekhar white dwarfs depending on the magnetic field geometry and its strength.
The direct measurement of gravitational waves is a powerful tool for surveying the population of black holes across the universe. The first gravitational wave catalog from LIGO has detected black holes as heavy as $sim50~M_odot$, colliding when our U niverse was about half its current age. However, there is yet no unambiguous evidence of black holes in the intermediate-mass range of $10^{2-5}~M_odot$. Recent electromagnetic observations have hinted at the existence of IMBHs in the local universe; however, their masses are poorly constrained. The likely formation mechanisms of IMBHs are also not understood. Here we make the case that multiband gravitational wave astronomy --specifically, joint observations by space- and ground-based gravitational wave detectors-- will be able to survey a broad population of IMBHs at cosmological distances. By utilizing general relativistic simulations of merging black holes and state-of-the-art gravitational waveform models, we classify three distinct population of binaries with IMBHs in the multiband era and discuss what can be observed about each. Our studies show that multiband observations involving the upgraded LIGO detector and the proposed space-mission LISA would detect the inspiral, merger and ringdown of IMBH binaries out to redshift ~2. Assuming that next-generation detectors, Einstein Telescope, and Cosmic Explorer, are operational during LISAs mission lifetime, we should have multiband detections of IMBH binaries out to redshift ~5. To facilitate studies on multiband IMBH sources, here we investigate the multiband detectability of IMBH binaries. We provide analytic relations for the maximum redshift of multiband detectability, as a function of black hole mass, for various detector combinations. Our study paves the way for future work on what can be learned from IMBH observations in the era of multiband gravitational wave astronomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا