ترغب بنشر مسار تعليمي؟ اضغط هنا

First tidal disruption events discovered by SRG/eROSITA: X-ray/optical properties and X-ray luminosity function at z<0.6

112   0   0.0 ( 0 )
 نشر من قبل Sergey Sazonov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first sample of TDEs discovered during the SRG all-sky survey. These 13 events were selected among X-ray transients detected on the 0<l<180 hemisphere by eROSITA during its second scan of the sky (10 June-14 Dec. 2020) and confirmed as TDEs by our optical follow-up observations. The most distant event occurred at z=0.581. One TDE continued to brighten after its discovery for at least another 6 months. The X-ray spectra can be described by emission from a standard accretion disk with kT between 0.05 and 0.5 keV, consistent with near-critical accretion onto black holes of a few 10^3 to 10^8 Msun, although super-critical accretion is possibly taking place. In 2 TDEs, a spectral hardening is observed 6 months after the discovery, possibly indicating the formation of an accretion disk corona. 4 TDEs show an optical brightening concurring with or preceding the X-ray outburst. All 13 TDEs are optically faint, with Lg/Lx<0.1 in most cases, where Lg and Lx are the intrinsic g-band and 0.2-6 keV luminosities, respectively. This sample is thus drastically different from TDEs selected at optical wavelengths. We have constructed a TDE X-ray luminosity function in the 10^42.5-10^45 erg/s range. The TDE volume rate decreases with increasing X-ray luminosity approximately as a power law with alpha=-0.6+/-0.2. This is similar to a trend observed for optically selected TDEs. The total rate at z<0.6 is (1.1+/-0.5)10^-5 TDEs/galaxy/year, an order of magnitude lower than previously estimated from optical studies. This might indicate that X-ray bright events constitute a minority of all TDEs, which would provide support to models predicting a strong dependence on the viewing angle. Our current TDE detection threshold can be lowered by a factor of ~2, which should make it possible to find ~700 TDEs by the end of the SRG survey over the entire sky.



قيم البحث

اقرأ أيضاً

We derive the first hard X-ray luminosity function (XLF) of stellar tidal disruption events (TDEs) by supermassive black holes (SMBHs), which gives an occurrence rate of TDEs per unit volume as a function of peak luminosity and redshift, utilizing an unbiased sample observed by the Monitor of All-sky X-ray Image (MAXI). On the basis of the light curves characterized by a power-law decay with an index of $-5/3$, a systematic search using the MAXI data in the first 37 months detected four TDEs, all of which have been found in the literature. To formulate the TDE XLF, we consider the mass function of SMBHs, that of disrupted stars, the specific TDE rate as a function of SMBH mass, and the fraction of TDEs with relativistic jets. We perform an unbinned maximum likelihood fit to the MAXI TDE list and check the consistency with the observed TDE rate in the ROSAT all sky survey. The results suggest that the intrinsic fraction of the jet-accompanying events is $0.0007$--$34%$. We confirm that at $z lesssim 1.5$ the contamination by TDEs to the hard X-ray luminosity functions of active galactic nuclei is not significant and hence that their contribution to the growth of SMBHs is negligible at the redshifts.
We report the discovery of X-ray emission from CFHQS J142952+544717, the most distant known radio-loud quasar at z=6.18, on Dec. 10--11, 2019 with the eROSITA telescope on board the SRG satellite during its ongoing all-sky survey. The object was iden tified by cross-matching an intermediate SRG/eROSITA source catalog with the Pan-STARRS1 distant quasar sample at 5.6 < z < 6.7. The measured flux $sim 8 times 10^{-14}$ erg cm$^{-2}$ s$^{-1}$ in the 0.3--2 keV energy band corresponds to an X-ray luminosity of $2.6^{+1.7}_{-1.0}times 10^{46}$ erg s$^{-1}$ in the 2--10 keV rest-frame energy band, which renders CFHQS J142952+544717 the most X-ray luminous quasar ever observed at z > 6. Combining our X-ray measurements with archival and new photometric measurements in other wavebands (radio to optical), we estimate the bolometric luminosity of this quasar at $sim (2$--$3) times 10^{47}$ erg s$^{-1}$. Assuming Eddington limited accretion and isotropic emission, we infer a lower limit on the mass of the supermassive black hole of $sim 2times 10^9 M_odot$. The most salient feature of CFHQS J142952+544717 is its X-ray brightness relative to the optical/UV emission. We argue that it may be linked to its radio-loudness (although the object is not a blazar according to its radio properties), specifically to a contribution of inverse Compton scattering of cosmic microwave background photons off relativistic electrons in the jets. If so, CFHQS J142952+544717 might be the tip of the iceberg of high-z quasars with enhanced X-ray emission, and SRG/eROSITA may find many more such objects during its 4 year all-sky survey.
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the primary instrument on the Spectrum-Roentgen-Gamma (SRG) mission, which was successfully launched on July 13, 2019, from the Baikonour cosmodrome. After the commissioning of the instrument and a subsequent calibration and performance verification phase, eROSITA started a survey of the entire sky on December 13, 2019. By the end of 2023, eight complete scans of the celestial sphere will have been performed, each lasting six months. At the end of this program, the eROSITA all-sky survey in the soft X-ray band (0.2--2.3,keV) will be about 25 times more sensitive than the ROSAT All-Sky Survey, while in the hard band (2.3--8,keV) it will provide the first ever true imaging survey of the sky. The eROSITA design driving science is the detection of large samples of galaxy clusters up to redshifts $z>1$ in order to study the large-scale structure of the universe and test cosmological models including Dark Energy. In addition, eROSITA is expected to yield a sample of a few million AGNs, including obscured objects, revolutionizing our view of the evolution of supermassive black holes. The survey will also provide new insights into a wide range of astrophysical phenomena, including X-ray binaries, active stars, and diffuse emission within the Galaxy. Results from early observations, some of which are presented here, confirm that the performance of the instrument is able to fulfil its scientific promise. With this paper, we aim to give a concise description of the instrument, its performance as measured on ground, its operation in space, and also the first results from in-orbit measurements.
We develop a new model for X-ray emission from tidal disruption events (TDEs), applying stationary general relativistic ``slim disk accretion solutions to supermassive black holes (SMBHs) and then ray-tracing the photon trajectories from the image pl ane to the disk surface, including gravitational redshift, Doppler, and lensing effects self-consistently. We simultaneously and successfully fit the multi-epoch XMM-Newton X-ray spectra for two TDEs: ASASSN-14li and ASASSN-15oi. We test explanations for the observed, unexpectedly slow X-ray brightening of ASASSN-15oi, including delayed disk formation and variable obscuration by a reprocessing layer. We propose a new mechanism that better fits the data: a ``Slimming Disk scenario in which accretion onto an edge-on disk slows, reducing the disk height and exposing more X-rays from the inner disk to the sightline over time.For ASASSN-15oi, we constrain the SMBH mass to $4.0^{+2.5}_{-3.1} times 10^6M_odot$. For ASASSN-14li, the SMBH mass is $10^{+1}_{-7}times 10^6M_odot$ and the spin is $>0.3$. For both TDEs, our fitted masses are consistent with independent estimates; for ASASSN-14li, application of the external mass constraint narrows our spin constraint to $>0.85$. The mass accretion rate of ASASSN-14li decays slowly, as $propto t^{-1.1}$, perhaps due to inefficient debris circularization. Over $approx$1100 days, its SMBH has accreted $Delta M approx 0.17 M_odot$, implying a progenitor star mass of $> 0.34 M_odot$, i.e., no ``missing energy problem. For both TDEs, the hydrogen column density declines to the host galaxy plus Milky Way value after a few hundred days, suggesting a characteristic timescale for the depletion or removal of obscuring gas.
We searched for high-z quasars within the X-ray source population detected in the contiguous $sim 140^2$ eFEDS field observed by eROSITA during the performance verification phase. We collected the available spectroscopic information in the field, inc luding the sample of all currently known optically selected z>5.5 quasars and cross-matched secure Legacy DR8 counterparts of eROSITA-detected X-ray point-like sources with this spectroscopic sample. We report the X-ray detection of an eROSITA source securely matched to the well-known quasar SDSS J083643.85+005453.3 (z=5.81). The soft X-ray flux of the source derived from eROSITA is consistent with previous Chandra observations. In addition, we report the detection of the quasar with LOFAR at 145 MHz and ASKAP at 888 MHz. The reported flux densities confirm a spectral flattening at lower frequencies in the emission of the radio core, indicating that the quasar could be a (sub-) gigahertz peaked spectrum source. The inferred spectral shape and the parsec-scale radio morphology of SDSS J083643.85+005453.3 suggest that it is in an early stage of its evolution into a large-scale radio source or confined in a dense environment. We find no indications for a strong jet contribution to the X-ray emission of the quasar, which is therefore likely to be linked to accretion processes. The detection of this source allows us to place the first constraints on the XLF at z>5.5 based on a secure spectroscopic redshift. Compared to extrapolations from lower-redshift observations, this favours a relatively flat slope for the XLF at $zsim 6$ beyond $L_*$. The population of X-ray luminous AGNs at high redshift may be larger than previously thought. From our XLF constraints, we make the conservative prediction that eROSITA will detect $sim 90$ X-ray luminous AGNs at redshifts 5.7<z<6.4 in the full-sky survey (De+RU).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا