ﻻ يوجد ملخص باللغة العربية
Recently there have been a lot of interests in introducing UAVs for a wide range of applications, making ensuring safety of multi-vehicle systems a highly crucial problem. Hamilton-Jacobi (HJ) reachability is a promising tool for analyzing safety of vehicles for low-dimensional systems. However, reachability suffers from the curse of dimensionality, making its direct application to more than two vehicles intractable. Recent works have made it tractable to guarantee safety for 3 and 4 vehicles with reachability. However, the number of vehicles safety can be guaranteed for remains small. In this paper, we propose a novel reachability-based approach that guarantees safety for any number of vehicles while vehicles complete their objectives of visiting multiple targets efficiently, given any K-vehicle collision avoidance algorithm where K can in general be a small number. We achieve this by developing an approach to group vehicles into clusters efficiently and a control strategy that guarantees safety for any in-cluster and cross-cluster pair of vehicles for all time. Our proposed method is scalable to large number of vehicles with little computation overhead. We demonstrate our proposed approach with a simulation on 15 vehicles. In addition, we contribute a more general solution to the 3-vehicle collision avoidance problem from a past recent work, show that the prior work is a special case of our proposed generalization, and prove its validity.
Real-world autonomous systems often employ probabilistic predictive models of human behavior during planning to reason about their future motion. Since accurately modeling human behavior a priori is challenging, such models are often parameterized, e
Action anticipation, intent prediction, and proactive behavior are all desirable characteristics for autonomous driving policies in interactive scenarios. Paramount, however, is ensuring safety on the road -- a key challenge in doing so is accounting
Within a robot autonomy stack, the planner and controller are typically designed separately, and serve different purposes. As such, there is often a diffusion of responsibilities when it comes to ensuring safety for the robot. We propose that a plann
This paper addresses a generalization of the well known multi-agent path finding (MAPF) problem that optimizes multiple conflicting objectives simultaneously such as travel time and path risk. This generalization, referred to as multi-objective MAPF
Real-world autonomous vehicles often operate in a priori unknown environments. Since most of these systems are safety-critical, it is important to ensure they operate safely in the face of environment uncertainty, such as unseen obstacles. Current sa