ترغب بنشر مسار تعليمي؟ اضغط هنا

QuantileRK: Solving Large-Scale Linear Systems with Corrupted, Noisy Data

124   0   0.0 ( 0 )
 نشر من قبل Benjamin Jarman
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurement data in linear systems arising from real-world applications often suffers from both large, sparse corruptions, and widespread small-scale noise. This can render many popular solvers ineffective, as the least squares solution is far from the desired solution, and the underlying consistent system becomes harder to identify and solve. QuantileRK is a member of the Kaczmarz family of iterative projective methods that has been shown to converge exponentially for systems with arbitrarily large sparse corruptions. In this paper, we extend the analysis to the case where there are not only corruptions present, but also noise that may affect every data point, and prove that QuantileRK converges with the same rate up to an error threshold. We give both theoretical and experimental results demonstrating QuantileRKs strength.



قيم البحث

اقرأ أيضاً

We consider the problem of efficiently solving large-scale linear least squares problems that have one or more linear constraints that must be satisfied exactly. Whilst some classical approaches are theoretically well founded, they can face difficult ies when the matrix of constraints contains dense rows or if an algorithmic transformation used in the solution process results in a modified problem that is much denser than the original one. To address this, we propose modifications and new ideas, with an emphasis on requiring the constraints are satisfied with a small residual. We examine combining the null-space method with our recently developed algorithm for computing a null space basis matrix for a ``wide matrix. We further show that a direct elimination approach enhanced by careful pivoting can be effective in transforming the problem to an unconstrained sparse-dense least squares problem that can be solved with existing direct or iterative methods. We also present a number of solution variants that employ an augmented system formulation, which can be attractive when solving a sequence of related problems. Numerical experiments using problems coming from practical applications are used throughout to demonstrate the effectiveness of the different approaches.
179 - Yanjun Zhang , Hanyu Li 2020
In this paper, combining count sketch and maximal weighted residual Kaczmarz method, we propose a fast randomized algorithm for large overdetermined linear systems. Convergence analysis of the new algorithm is provided. Numerical experiments show tha t, for the same accuracy, our method behaves better in computing time compared with the state-of-the-art algorithm.
We consider linear systems $Ax = b$ where $A in mathbb{R}^{m times n}$ consists of normalized rows, $|a_i|_{ell^2} = 1$, and where up to $beta m$ entries of $b$ have been corrupted (possibly by arbitrarily large numbers). Haddock, Needell, Rebrova an d Swartworth propose a quantile-based Random Kaczmarz method and show that for certain random matrices $A$ it converges with high likelihood to the true solution. We prove a deterministic version by constructing, for any matrix $A$, a number $beta_A$ such that there is convergence for all perturbations with $beta < beta_A$. Assuming a random matrix heuristic, this proves convergence for tall Gaussian matrices with up to $sim 0.5%$ corruption (a number that can likely be improved).
Often in applications ranging from medical imaging and sensor networks to error correction and data science (and beyond), one needs to solve large-scale linear systems in which a fraction of the measurements have been corrupted. We consider solving s uch large-scale systems of linear equations $mathbf{A}mathbf{x}=mathbf{b}$ that are inconsistent due to corruptions in the measurement vector $mathbf{b}$. We develop several variants of iterative methods that converge to the solution of the uncorrupted system of equations, even in the presence of large corruptions. These methods make use of a quantile of the absolute values of the residual vector in determining the iterate update. We present both theoretical and empirical results that demonstrate the promise of these iterative approaches.
Based on the geometric {it Triangle Algorithm} for testing membership of a point in a convex set, we present a novel iterative algorithm for testing the solvability of a real linear system $Ax=b$, where $A$ is an $m times n$ matrix of arbitrary rank. Let $C_{A,r}$ be the ellipsoid determined as the image of the Euclidean ball of radius $r$ under the linear map $A$. The basic procedure in our algorithm computes a point in $C_{A,r}$ that is either within $varepsilon$ distance to $b$, or acts as a certificate proving $b ot in C_{A,r}$. Each iteration takes $O(mn)$ operations and when $b$ is well-situated in $C_{A,r}$, the number of iterations is proportional to $log{(1/varepsilon)}$. If $Ax=b$ is solvable the algorithm computes an approximate solution or the minimum-norm solution. Otherwise, it computes a certificate to unsolvability, or the minimum-norm least-squares solution. It is also applicable to complex input. In a computational comparison with the state-of-the-art algorithm BiCGSTAB ({it Bi-conjugate gradient method stabilized}), the Triangle Algorithm is very competitive. In fact, when the iterates of BiCGSTAB do not converge, our algorithm can verify $Ax=b$ is unsolvable and approximate the minimum-norm least-squares solution. The Triangle Algorithm is robust, simple to implement, and requires no preconditioner, making it attractive to practitioners, as well as researchers and educators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا