ﻻ يوجد ملخص باللغة العربية
We construct one-dimensional nonlinear lattices having the special property such that the Umklapp process vanishes and only the normal processes are included in the potential functions. We study heat transport in these lattices by non-equilibrium molecular dynamics simulation. It is shown that the ballistic heat transport occurs, i.e., the scaling law $kappapropto N$ holds between the thermal conductivity $kappa$ and the lattice size $N$. This result directly validates Peierlss hypothesis that only the Umklapp processes can cause the thermal resistance while the normal one do not.
In d-dimensional lattices of coupled quantum harmonic oscillators, we analyze the heat current caused by two thermal baths of different temperature, which are coupled to opposite ends of the lattice, with focus on the validity of Fouriers law of heat
We show that the generalized diffusion coefficient of a subdiffusive intermittent map is a fractal function of control parameters. A modified continuous time random walk theory yields its coarse functional form and correctly describes a dynamical pha
The spatiotemporal dynamics of Lyapunov vectors (LVs) in spatially extended chaotic systems is studied by means of coupled-map lattices. We determine intrinsic length scales and spatiotemporal correlations of LVs corresponding to the leading unstable
We formulate and study a low-order nonlinear coupled ocean-atmosphere model with an emphasis on the impact of radiative and heat fluxes and of the frictional coupling between the two components. This model version extends a previous 24-variable versi
The ballistic to diffusive crossover, that occurs when quasiparticles transport heat or charge, is important in small systems. Propagation of energy from an initial localized pulse provides a useful picture of the process. This paper looks at the sim