ﻻ يوجد ملخص باللغة العربية
A reliable technique for deductive program verification should be proven sound with respect to the semantics of the programming language. For each different language, the construction of a separate soundness proof is often a laborious undertaking. In language-independent program verification, common aspects of computer programs are addressed to enable sound reasoning for all languages. In this work, we propose a solution for the sound reasoning about iteration and recursion based on the big-step operational semantics of any programming language. We give inductive proofs on the soundness and relative completeness of our reasoning technique. We illustrate the technique at simplified programming languages of the imperative and functional paradigms, with diverse features. We also mechanism all formal results in the Coq proof assistant.
Structural operational semantic specifications come in different styles: small-step and big-step. A problem with the big-step style is that specifying divergence and abrupt termination gives rise to annoying duplication. We present a novel approach t
We propose a general proof technique to show that a predicate is sound, that is, prevents stuck computation, with respect to a big-step semantics. This result may look surprising, since in big-step semantics there is no difference between non-termina
It is well-known that big-step semantics is not able to distinguish stuck and non-terminating computations. This is a strong limitation as it makes very difficult to reason about properties involving infinite computations, such as type soundness, whi
We investigate representations of imperative programs as constrained Horn clauses. Starting from operational semantics transition rules, we proceed by writing interpreters as constrained Horn clause programs directly encoding the rules. We then speci
We present the guarded lambda-calculus, an extension of the simply typed lambda-calculus with guarded recursive and coinductive types. The use of guarded recursive types ensures the productivity of well-typed programs. Guarded recursive types may be