ﻻ يوجد ملخص باللغة العربية
We combined the bond order length strength and bond charge models and the topological concept to obtain the nonbonding, bonding, and antibonding states of the T type WTe$_2$/MoS$_2$ heterostructure.The energy band projection method and electronic information entropy are remarkable approaches for analyzing the electronic properties of various structures based on DFT calculations. This study provides a new way to describe the electronic properties of T type heterostructures and calculate the electron and bonding state probabilities.
To date, germanene has only been synthesized on metallic substrates. A metallic substrate is usually detrimental for the two-dimensional Dirac nature of germanene because the important electronic states near the Fermi level of germanene can hybridize
Currently, there is a flurry of research interest on materials with an unconventional electronic structure, and we have already seen significant progress in their understanding and engineering towards real-life applications. The interest erupted with
Two-dimensional (2D) tungsten disulfide (WS$_2$), tungsten diselenide (WSe$_2$), and tungsten ditelluride (WTe$_2$) draw increasing attention due to their attractive properties deriving from the heavy tungsten and chalcogenide atoms, but their mechan
The carrier dynamics and electronic structures of type-II Weyl semimetal candidates MoTe$_2$ and WTe$_2$ have been investigated by using temperature-dependent optical conductivity [$sigma(omega)$] spectra. Two kinds of Drude peaks (narrow and broad)
By combining bulk sensitive soft-X-ray angular-resolved photoemission spectroscopy and accurate first-principles calculations we explored the bulk electronic properties of WTe$_2$, a candidate type-II Weyl semimetal featuring a large non-saturating m