ﻻ يوجد ملخص باللغة العربية
Identifying the boundary beyond which quantum machines provide a computational advantage over their classical counterparts is a crucial step in charting their usefulness. Gaussian Boson Sampling (GBS), in which photons are measured from a highly entangled Gaussian state, is a leading approach in pursuing quantum advantage. State-of-the-art quantum photonics experiments that, once programmed, run in minutes, would require 600 million years to simulate using the best pre-existing classical algorithms. Here, we present substantially faster classical GBS simulation methods, including speed and accuracy improvements to the calculation of loop hafnians, the matrix function at the heart of GBS. We test these on a $sim ! 100,000$ core supercomputer to emulate a range of different GBS experiments with up to 100 modes and up to 92 photons. This reduces the run-time of classically simulating state-of-the-art GBS experiments to several months -- a nine orders of magnitude improvement over previous estimates. Finally, we introduce a distribution that is efficient to sample from classically and that passes a variety of GBS validation methods, providing an important adversary for future experiments to test against.
Boson Sampling has emerged as a tool to explore the advantages of quantum over classical computers as it does not require a universal control over the quantum system, which favours current photonic experimental platforms.Here, we introduce Gaussian B
Gaussian Boson sampling (GBS) provides a highly efficient approach to make use of squeezed states from parametric down-conversion to solve a classically hard-to-solve sampling problem. The GBS protocol not only significantly enhances the photon gener
Boson sampling (BS) is a multimode linear optical problem that is expected to be intractable on classical computers. It was recently suggested that molecular vibronic spectroscopy (MVS) is computationally as complex as BS. In this review, we discuss
Photonics is a promising platform for demonstrating quantum computational supremacy (QCS) by convincingly outperforming the most powerful classical supercomputers on a well-defined computational task. Despite this promise, existing photonics proposal
Since the development of Boson sampling, there has been a quest to construct more efficient and experimentally feasible protocols to test the computational complexity of sampling from photonic states. In this paper we interpret and extend the results