ﻻ يوجد ملخص باللغة العربية
A high contrast imaging technique based on an optical vortex coronagraph (OVC) is used to measure the spatial phase profile induced by an air plasma generated by a femtosecond laser pulse. The sensitivity of the OVC method significantly surpassed both in-line holographic and direct imaging methods based on air plasma fluorescence. The estimated phase sensitivity of 0.046 waves provides opportunities for OVC applications in areas such as bioimaging, material characterization, as well as plasma diagnostics.
Using an optical vortex coronagraph and simple adaptive optics techniques we have made the first convincing demonstration of an optical vortex coronagraph that is coupled to a star gazing telescope. In particular we suppressed by 97% the primary star
Fast fabrication of micro-optical elements for generation of optical vortex beams based on the q-plate design is demonstrated by femtosecond (fs) laser ablation of gold film on glass. Q-plates with diameter of ~0.5 mm were made in ~1 min using galvan
The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a telescope element provides a continuous helica
The vortex coronagraph is an optical instrument that precisely removes on-axis starlight allowing for high contrast imaging at small angular separation from the star, thereby providing a crucial capability for direct detection and characterization of
Electric field control of magnetic structures, particularly topological defects in magnetoelectric materials, draws a great attention in recent years, which has led to experimental success in creation and manipulation by electric field of single magn