ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-correlation of DES Y3 lensing and ACT/${it Planck}$ thermal Sunyaev Zeldovich Effect II: Modeling and constraints on halo pressure profiles

178   0   0.0 ( 0 )
 نشر من قبل Shivam Pandey
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hot, ionized gas leaves an imprint on the cosmic microwave background via the thermal Sunyaev Zeldovich (tSZ) effect. The cross-correlation of gravitational lensing (which traces the projected mass) with the tSZ effect (which traces the projected gas pressure) is a powerful probe of the thermal state of ionized baryons throughout the Universe, and is sensitive to effects such as baryonic feedback. In a companion paper (Gatti et al. 2021), we present tomographic measurements and validation tests of the cross-correlation between galaxy shear measurements from the first three years of observations of the Dark Energy Survey, and tSZ measurements from a combination of Atacama Cosmology Telescope and ${it Planck}$ observations. In this work, we use the same measurements to constrain models for the pressure profiles of halos across a wide range of halo mass and redshift. We find evidence for reduced pressure in low mass halos, consistent with predictions for the effects of feedback from active galactic nuclei. We infer the hydrostatic mass bias ($B equiv M_{500c}/M_{rm SZ}$) from our measurements, finding $B = 1.8pm0.1$ when adopting the ${it Planck}$-preferred cosmological parameters. We additionally find that our measurements are consistent with a non-zero redshift evolution of $B$, with the correct sign and sufficient magnitude to explain the mass bias necessary to reconcile cluster count measurements with the ${it Planck}$-preferred cosmology. Our analysis introduces a model for the impact of intrinsic alignments (IA) of galaxy shapes on the shear-tSZ correlation. We show that IA can have a significant impact on these correlations at current noise levels.

قيم البحث

اقرأ أيضاً

249 - M. Gatti , S. Pandey , E. Baxter 2021
We present a tomographic measurement of the cross-correlation between thermal Sunyaev-Zeldovich (tSZ) maps from ${it Planck}$ and the Atacama Cosmology Telescope (ACT) and weak galaxy lensing shears measured during the first three years of observatio ns of the Dark Energy Survey (DES Y3). This correlation is sensitive to the thermal energy in baryons over a wide redshift range, and is therefore a powerful probe of astrophysical feedback. We detect the correlation at a statistical significance of $21sigma$, the highest significance to date. We examine the tSZ maps for potential contaminants, including cosmic infrared background (CIB) and radio sources, finding that CIB has a substantial impact on our measurements and must be taken into account in our analysis. We use the cross-correlation measurements to test different feedback models. In particular, we model the tSZ using several different pressure profile models calibrated against hydrodynamical simulations. Our analysis marginalises over redshift uncertainties, shear calibration biases, and intrinsic alignment effects. We also marginalise over $Omega_{rm m}$ and $sigma_8$ using ${it Planck}$ or DES priors. We find that the data prefers the model with a low amplitude of the pressure profile at small scales, compatible with a scenario with strong AGN feedback and ejection of gas from the inner part of the halos. When using a more flexible model for the shear profile, constraints are weaker, and the data cannot discriminate between different baryonic prescriptions.
We confront the universal pressure profile (UPP) proposed by~citet{Arnaud10} with the recent measurement of the cross-correlation function of the thermal Sunyaev-Zeldovich (tSZ) effect from Planck and weak gravitational lensing measurement from the R ed Cluster Sequence lensing survey (RCSLenS). By using the halo model, we calculate the prediction of $xi^{y-kappa}$ (lensing convergence and Compton-$y$ parameter) and $xi^{y-gamma_{rm t}}$ (lensing shear and Compton-$y$ parameter) and fit the UPP parameters by using the observational data. We find consistent UPP parameters when fixing the cosmology to either WMAP 9-year or Planck 2018 best-fitting values. The best constrained parameter is the pressure profile concentration $c_{500}=r_{500}/r_{rm s}$, for which we find $c_{500} = 2.68^{+1.46}_{-0.96}$ (WMAP-9) and $c_{500} = 1.91^{+1.07}_{-0.65}$ (Planck-2018) for the $xi^{y-gamma_t}$ estimator. The shape index for the intermediate radius region $alpha$ parameter is constrained to $alpha=1.75^{+1.29}_{-0.77}$ and $alpha = 1.65^{+0.74}_{-0.5}$ for WMAP-9 and Planck-2018 cosmologies, respectively. Propagating the uncertainties of the UPP parameters to pressure profiles results in a factor of $3$ uncertainty in the shape and magnitude. Further investigation shows that most of the signal of the cross-correlation comes from the low-redshift, inner halo profile ($r leqslant r_{rm vir}/2$) with halo mass in the range of $10^{14}$--$10^{15},{rm M}_{odot}$, suggesting that this is the major regime that constitutes the cross-correlation signal between weak lensing and tSZ.
We measure the Cosmic Microwave Background (CMB) skewness power spectrum in $textit{Planck}$, using frequency maps of the HFI instrument and the Sunyaev-Zeldovich (SZ) component map. The two-to-one skewness power spectrum measures the cross-correlati on between CMB lensing and the thermal SZ effect. We also directly measure the same cross-correlation using $textit{Planck}$ CMB lensing map and the SZ map and compare it to the cross-correlation derived from the skewness power spectrum. We model fit the SZ power spectrum and CMB lensing-SZ cross power spectrum via the skewness power spectrum to constrain the gas pressure profile of dark matter halos. The gas pressure profile is compared to existing measurements in the literature including a direct estimate based on the stacking of SZ clusters in $textit{Planck}$.
We conduct a pseudo-$C_ell$ analysis of the tomographic cross-correlation between 1000 deg$^2$ of weak lensing data from the Kilo-Degree Survey (KiDS-1000) and the thermal Sunyaev-Zeldovich (tSZ) effect measured by Planck and the Atacama Cosmology Te lescope (ACT). Using HMx, a halo-model-based approach that consistently models the gas, star, and dark matter components, we are able to derive constraints on both cosmology and baryon feedback for the first time from this data, marginalising over redshift uncertainties, intrinsic alignment of galaxies, and contamination by the cosmic infrared background (CIB). We find our results to be insensitive to the CIB, while intrinsic alignment provides a small but significant contribution to the lensing--tSZ cross-correlation. The cosmological constraints are consistent with those of other low-redshift probes and prefer strong baryon feedback. The inferred amplitude of the lensing--tSZ cross-correlation signal, which scales as $sigma_8(Omega_mathrm{m}/0.3)^{0.2}$, is low by $sim 2,sigma$ compared to the primary cosmic microwave background constraints by Planck. The lensing--tSZ measurements are then combined with pseudo-$C_ell$ measurements of KiDS-1000 cosmic shear into a novel joint analysis, accounting for the full cross-covariance between the probes, providing tight cosmological constraints by breaking parameter degeneracies inherent to both probes. The joint analysis gives an improvement of 40% on the constraint of $S_8=sigma_8sqrt{Omega_mathrm{m}/0.3}$ over cosmic shear alone, while providing constraints on baryon feedback consistent with hydrodynamical simulations, demonstrating the potential of such joint analyses with baryonic tracers like the tSZ effect. We discuss remaining modelling challenges that need to be addressed if these baryonic probes are to be included in future precision-cosmology analyses.
We use the cosmo-OWLS suite of cosmological hydrodynamical simulations, which includes different galactic feedback models, to predict the cross-correlation signal between weak gravitational lensing and the thermal Sunyaev-Zeldovich (tSZ) $y$-paramete r. The predictions are compared to the recent detection reported by van Waerbeke and collaborators. The simulations reproduce the weak lensing-tSZ cross-correlation, $xi_{ykappa}(theta)$, well. The uncertainty arising from different possible feedback models appears to be important on small scales only ($theta lesssim 10$ arcmin), while the amplitude of the correlation on all scales is sensitive to cosmological parameters that control the growth rate of structure (such as $sigma_8$, $Omega_m$ and $Omega_b$). This study confirms our previous claim (in Ma et al.) that a significant proportion of the signal originates from the diffuse gas component in low-mass ($M_{rm{halo}} lesssim 10^{14} M_{odot}$) clusters as well as from the region beyond the virial radius. We estimate that approximately 20$%$ of the detected signal comes from low-mass clusters, which corresponds to about 30$%$ of the baryon density of the Universe. The simulations also suggest that more than half of the baryons in the Universe are in the form of diffuse gas outside halos ($gtrsim 5$ times the virial radius) which is not hot or dense enough to produce a significant tSZ signal or be observed by X-ray experiments. Finally, we show that future high-resolution tSZ-lensing cross-correlation observations will serve as a powerful tool for discriminating between different galactic feedback models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا