ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on a tidal charge of the supermassive black hole in M87* with the EHT observations in April 2017

108   0   0.0 ( 0 )
 نشر من قبل Alexander Zakharov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Slightly more than two years ago the Event Horizon Telescope (EHT) team presented the first image reconstruction around shadow for the supermassive black hole in centre of M87. It gives an opportunity to evaluate the shadow size. Recently, the EHT team constrained parameters (charges) of spherical symmetrical metrics of black holes from an estimated allowed interval for shadow radius from observations of M87*. In our papers we obtained analytical expressions for shadow radius as a function of charge (including a tidal one) in the case of the case of Reissner -- Nordstrom metric. Some time ago Bin-Nun proposed to apply Reissner -- Nordstrom metric with a tidal charge as an alternative to the Schwarzschild metric in Sgr A*. If we assume that Reissner -- Nordstrom black hole with a tidal charge exists in M87*, therefore, based on results of shadow evaluation for M87* done by the EHT team we constrain a tidal charge. Similarly, we evaluate a tidal charge from shadow size estimates for Sgr A*.



قيم البحث

اقرأ أيضاً

Our understanding of strong gravity near supermassive compact objects has recently improved thanks to the measurements made by the Event Horizon Telescope (EHT). We use here the M87* shadow size to infer constraints on the physical charges of a large variety of nonrotating or rotating black holes. For example, we show that the quality of the measurements is already sufficient to rule out that M87* is a highly charged dilaton black hole. Similarly, when considering black holes with two physical and independent charges, we are able to exclude considerable regions of the space of parameters for the doubly-charged dilaton and the Sen black holes.
As it was pointed out recently in Hees et al. (2017), observations of stars near the Galactic Center with current and future facilities provide an unique tool to test general relativity (GR) and alternative theories of gravity in a strong gravitation al field regime. In particular, the authors showed that the Yukawa gravity could be constrained with Keck and TMT observations. Some time ago, Dadhich et al. (2001) showed that the Reissner -- Nordstrom metric with a tidal charge is naturally appeared in the framework of Randall -- Sundrum model with an extra dimension ($Q^2$ is called tidal charge and it could be negative in such an approach). Astrophysical consequences of of presence of black holes with a tidal charge are considerered, in particular, geodesics and shadows in Kerr -- Newman braneworld metric are analyzed in (Schee and Stuchlik, 2009a), while profiles of emission lines generated by rings orbiting braneworld Kerr black hole are considered in (Schee and Stuchlik, 2009b). Possible observational signatures of gravitational lensing in a presence of the Reissner -- Nordstrom black hole with a tidal charge at the Galactic Center are discussed in papers by Bin-Nun (2010a, 2010b, 2011). Here we are following such an approach and we obtain analytical expressions for orbital precession for Reissner -- Nordstrom -- de-Sitter solution in post-Newtonian approximation and discuss opportunities to constrain parameters of the metric from observations of bright stars with current and future astrometric observational facilities such as VLT, Keck, GRAVITY, E-ELT and TMT.
One of the most interesting astronomical objects is the Galactic Center. We concentrate our discussion on a theoretical analysis of observational data of bright stars in the IR-band obtained with large telescopes. We also discuss the importance of VL BI observations of bright structures which could characterize the shadow at the Galactic Center. There are attempts to describe the Galactic Center with alternative theories of gravity and in this case one can constrain parameters of such theories with observational data for the Galactic Center. In particular, theories of massive gravity are intensively developing and theorists have overcome pathologies presented in initi
152 - Jian-Min Wang 2008
The rapid TeV $gamma-$ray variability detected in the well-known nearby radio galaxy M87 implies an extremely compact emission region (5-10 Schwarzschild radii) near the horizon of the supermassive black hole in the galactic center. TeV photons are a ffected by dilution due to interaction with the radiation field of the advection-dominated accretion flow (ADAF) around the black hole, and can thus be used to probe the innermost regions around the black hole. We calculate the optical depth of the ADAF radiation field to the TeV photons and find it strongly depends on the spin of the black hole. We find that transparent radii of 10 TeV photons are of $5R_{rm S}$ and $13R_{rm S}$ for the maximally rotating and non-rotating black holes, respectively. With the observations, the calculated transparent radii strongly suggest the black hole is spinning fast in the galaxy. TeV photons could be used as a powerful diagnostic for estimating black hole spins in galaxies in the future.
Approximately 10% of active galactic nuclei exhibit relativistic jets, which are powered by accretion of matter onto super massive black holes. While the measured width profiles of such jets on large scales agree with theories of magnetic collimation , predicted structure on accretion disk scales at the jet launch point has not been detected. We report radio interferometry observations at 1.3mm wavelength of the elliptical galaxy M87 that spatially resolve the base of the jet in this source. The derived size of 5.5 +/- 0.4 Schwarzschild radii is significantly smaller than the innermost edge of a retrograde accretion disk, suggesting that the M87 jet is powered by an accretion disk in a prograde orbit around a spinning black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا