ﻻ يوجد ملخص باللغة العربية
Chaos in semiconductor lasers or other optical systems have been intensively studied in past two decades. However, the route from period doubling to chaos is still not sufficiently visible, in particular, in gain-modulated semiconductor lasers. In this article we perform a careful investigation of the route to chaos exhibited by directly modulated semiconductor lasers near the threshold region with various values of modulation frequency and amplitude. Gain nonlinearity is included in the simulation of pulse train generation through gain switching, and a new form of phase space representation is introduced to distinctly display period doubling, tripling, quadrupling and chaos. The irregular behaviour is examined at various modulation frequencies and amplitudes, highlighting the possible route to chaos for very large amplitude modulation in the near-threshold region. The existence of deterministic trajectories below the laser threshold is rendered possible by the presence of the (average component of the) spontaneous emission, a point which has not often been explicitly considered. Furthermore, we report on the existence of a transition between similar attractors characterized by a temporal transient which depends on the amplitude of the modulation driving the pump.
A homogeneously broadened unidirectonal ring laser can emit in several longitudinal modes for large enough pump and cavity length because of Rabi splitting induced gain. This is the so called Risken-Nummedal-Graham-Haken (RNGH) instability. We invest
We reply to S. Coen and T. Sylvestres comment on our paper [Phys. Rev. A 80, 045803 (2009)] and make some additional remarks on our experimental results.
With the help of a simple rate equation model, we analyze the intrinsic dynamics of threshold crossing for Class B lasers. A thorough discussion of the characteristics and the limitations of this very commonly employed model, which provides excellent
We probe the physical mechanism behind the known phenomenon of power synchronization of two diode lasers that are mutually coupled via their delayed optical fields. In a diode laser, the amplitude and the phase of the optical field are coupled by the
Many natural systems display transitions among different dynamical regimes, which are difficult to identify when the data is noisy and high dimensional. A technologically relevant example is a fiber laser, which can display complex dynamical behavior