ﻻ يوجد ملخص باللغة العربية
This paper investigates an open research task of text-to-image synthesis for automatically generating or manipulating images from text descriptions. Prevailing methods mainly use the text as conditions for GAN generation, and train different models for the text-guided image generation and manipulation tasks. In this paper, we propose a novel unified framework of Cycle-consistent Inverse GAN (CI-GAN) for both text-to-image generation and text-guided image manipulation tasks. Specifically, we first train a GAN model without text input, aiming to generate images with high diversity and quality. Then we learn a GAN inversion model to convert the images back to the GAN latent space and obtain the inverted latent codes for each image, where we introduce the cycle-consistency training to learn more robust and consistent inverted latent codes. We further uncover the latent space semantics of the trained GAN model, by learning a similarity model between text representations and the latent codes. In the text-guided optimization module, we generate images with the desired semantic attributes by optimizing the inverted latent codes. Extensive experiments on the Recipe1M and CUB datasets validate the efficacy of our proposed framework.
In this paper, we focus on generating realistic images from text descriptions. Current methods first generate an initial image with rough shape and color, and then refine the initial image to a high-resolution one. Most existing text-to-image synthes
Text-to-Image translation has been an active area of research in the recent past. The ability for a network to learn the meaning of a sentence and generate an accurate image that depicts the sentence shows ability of the model to think more like huma
A text to image generation (T2I) model aims to generate photo-realistic images which are semantically consistent with the text descriptions. Built upon the recent advances in generative adversarial networks (GANs), existing T2I models have made great
Text-to-image synthesis aims to automatically generate images according to text descriptions given by users, which is a highly challenging task. The main issues of text-to-image synthesis lie in two gaps: the heterogeneous and homogeneous gaps. The h
This paper presents a novel method to manipulate the visual appearance (pose and attribute) of a person image according to natural language descriptions. Our method can be boiled down to two stages: 1) text guided pose generation and 2) visual appear