ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpretable Trade-offs Between Robot Task Accuracy and Compute Efficiency

396   0   0.0 ( 0 )
 نشر من قبل Bineet Ghosh
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A robot can invoke heterogeneous computation resources such as CPUs, cloud GPU servers, or even human computation for achieving a high-level goal. The problem of invoking an appropriate computation model so that it will successfully complete a task while keeping its compute and energy costs within a budget is called a model selection problem. In this paper, we present an optimal solution to the model selection problem with two compute models, the first being fast but less accurate, and the second being slow but more accurate. The main insight behind our solution is that a robot should invoke the slower compute model only when the benefits from the gain in accuracy outweigh the computational costs. We show that such cost-benefit analysis can be performed by leveraging the statistical correlation between the accuracy of fast and slow compute models. We demonstrate the broad applicability of our approach to diverse problems such as perception using neural networks and safe navigation of a simulated Mars rover.



قيم البحث

اقرأ أيضاً

The width of a neural network matters since increasing the width will necessarily increase the model capacity. However, the performance of a network does not improve linearly with the width and soon gets saturated. In this case, we argue that increas ing the number of networks (ensemble) can achieve better accuracy-efficiency trade-offs than purely increasing the width. To prove it, one large network is divided into several small ones regarding its parameters and regularization components. Each of these small networks has a fraction of the original ones parameters. We then train these small networks together and make them see various views of the same data to increase their diversity. During this co-training process, networks can also learn from each other. As a result, small networks can achieve better ensemble performance than the large one with few or no extra parameters or FLOPs. Small networks can also achieve faster inference speed than the large one by concurrent running on different devices. We validate our argument with 8 different neural architectures on common benchmarks through extensive experiments. The code is available at url{https://github.com/mzhaoshuai/Divide-and-Co-training}.
As multi-task models gain popularity in a wider range of machine learning applications, it is becoming increasingly important for practitioners to understand the fairness implications associated with those models. Most existing fairness literature fo cuses on learning a single task more fairly, while how ML fairness interacts with multiple tasks in the joint learning setting is largely under-explored. In this paper, we are concerned with how group fairness (e.g., equal opportunity, equalized odds) as an ML fairness concept plays out in the multi-task scenario. In multi-task learning, several tasks are learned jointly to exploit task correlations for a more efficient inductive transfer. This presents a multi-dimensional Pareto frontier on (1) the trade-off between group fairness and accuracy with respect to each task, as well as (2) the trade-offs across multiple tasks. We aim to provide a deeper understanding on how group fairness interacts with accuracy in multi-task learning, and we show that traditional approaches that mainly focus on optimizing the Pareto frontier of multi-task accuracy might not perform well on fairness goals. We propose a new set of metrics to better capture the multi-dimensional Pareto frontier of fairness-accuracy trade-offs uniquely presented in a multi-task learning setting. We further propose a Multi-Task-Aware Fairness (MTA-F) approach to improve fairness in multi-task learning. Experiments on several real-world datasets demonstrate the effectiveness of our proposed approach.
To date, there has been no formal study of the statistical cost of interpretability in machine learning. As such, the discourse around potential trade-offs is often informal and misconceptions abound. In this work, we aim to initiate a formal study o f these trade-offs. A seemingly insurmountable roadblock is the lack of any agreed upon definition of interpretability. Instead, we propose a shift in perspective. Rather than attempt to define interpretability, we propose to model the emph{act} of emph{enforcing} interpretability. As a starting point, we focus on the setting of empirical risk minimization for binary classification, and view interpretability as a constraint placed on learning. That is, we assume we are given a subset of hypothesis that are deemed to be interpretable, possibly depending on the data distribution and other aspects of the context. We then model the act of enforcing interpretability as that of performing empirical risk minimization over the set of interpretable hypotheses. This model allows us to reason about the statistical implications of enforcing interpretability, using known results in statistical learning theory. Focusing on accuracy, we perform a case analysis, explaining why one may or may not observe a trade-off between accuracy and interpretability when the restriction to interpretable classifiers does or does not come at the cost of some excess statistical risk. We close with some worked examples and some open problems, which we hope will spur further theoretical development around the tradeoffs involved in interpretability.
Trade-offs between accuracy and efficiency are found in multiple non-computing domains, such as law and public health, which have developed rules and heuristics to guide how to balance the two in conditions of uncertainty. While accuracy-efficiency t rade-offs are also commonly acknowledged in some areas of computer science, their policy implications remain poorly examined. Drawing on risk assessment practices in the US, we argue that, since examining accuracy-efficiency trade-offs has been useful for guiding governance in other domains, explicitly framing such trade-offs in computing is similarly useful for the governance of computer systems. Our discussion focuses on real-time distributed ML systems; understanding the policy implications in this area is particularly urgent because such systems, which include autonomous vehicles, tend to be high-stakes and safety-critical. We describe how the trade-off takes shape for these systems, highlight gaps between existing US risk assessment standards and what these systems require in order to be properly assessed, and make specific calls to action to facilitate accountability when hypothetical risks become realized as accidents in the real world. We close by discussing how such accountability mechanisms encourage more just, transparent governance aligned with public values.
The goal of this paper is to serve as a guide for selecting a detection architecture that achieves the right speed/memory/accuracy balance for a given application and platform. To this end, we investigate various ways to trade accuracy for speed and memory usage in modern convolutional object detection systems. A number of successful systems have been proposed in recent years, but apples-to-apples comparisons are difficult due to different base feature extractors (e.g., VGG, Residual Networks), different default image resolutions, as well as different hardware and software platforms. We present a unified implementation of the Faster R-CNN [Ren et al., 2015], R-FCN [Dai et al., 2016] and SSD [Liu et al., 2015] systems, which we view as meta-architectures and trace out the speed/accuracy trade-off curve created by using alternative feature extractors and varying other critical parameters such as image size within each of these meta-architectures. On one extreme end of this spectrum where speed and memory are critical, we present a detector that achieves real time speeds and can be deployed on a mobile device. On the opposite end in which accuracy is critical, we present a detector that achieves state-of-the-art performance measured on the COCO detection task.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا