ﻻ يوجد ملخص باللغة العربية
Plasmonic nanopatch antennas that incorporate dielectric gaps hundreds of picometers to several nanometers thick have drawn increasing attention over the past decade because they confine electromagnetic fields to grossly sub-diffraction limited volumes. Substantial control over the optical properties of excitons and color centers confined within these plasmonic cavities has already been demonstrated with far-field optical spectroscopies, but near-field optical spectroscopies are essential to an improved understanding of the plasmon-emitter interaction at the nanoscale. Here, we characterize the intensity and phase-resolved plasmonic response of isolated nanopatch antennas with cathodoluminescence microscopy. Further, we explore the distinction between optical and electron-beam spectroscopies of coupled plasmon-exciton heterostructures to identify constraints and opportunities for future nanoscale characterization and control of hybrid nanophotonic structures. While we observe substantial Purcell enhancement in time-resolved photoluminescence spectroscopies, negligible Purcell enhancement is observed in cathodoluminescence spectroscopies of hybrid nanophotonic structures. The substantial differences in measured Purcell enhancement for electron-beam and laser excitation can be understood as a result of the different selection rules for these complementary experiments. These results provide a fundamentally new understanding of near-field plasmon-exciton interactions in nanopatch antennas that is essential to myriad emerging quantum photonic devices.
Plasmonic enhancement of nonlinear optical processes confront severe limitations arising from the strong dispersion of metal susceptibilities and small interaction volumes that hamper desirable phase-matching-like conditions. Maximizing nonlinear int
Strong light-matter interaction and high-efficiency optical collection of fluorescence from quantum emitters are crucial topics in quantum and nanophotonic fields. High-quality cavities, dispersive photonic crystal waveguides and even plasmonic struc
Optical near-field interactions between nanostructured matter, such as quantum dots, result in unidirectional optical excitation transfer when energy dissipation is induced. This results in versatile spatiotemporal dynamics of the optical excitation,
We report a type of solar cells based on graphene/CdTe Schottky heterostructure, which can be improved by surface engineering as graphene is one-atomic thin. By coating a layer of ultrathin CdSe quantum dots onto graphene/CdTe heterostructure, the po
Deterministic fractal antennas are employed to realize multimodal plasmonic devices. Such structures show strongly enhanced localized electromagnetic fields typically in the infrared range with a hierarchical spatial distribution. Realization of engi