ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomic reconstruction and flat bands in strain engineered transition metal dichalcogenide bilayer moir{e} systems

302   0   0.0 ( 0 )
 نشر من قبل Sudipta Kundu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strain-induced lattice mismatch leads to moir{e} patterns in homobilayer transition metal dichalcogenides (TMDs). We investigate the structural and electronic properties of such strained moir{e} patterns in TMD homobilayers. The moir{e} patterns in strained TMDs consist of several stacking domains which are separated by tensile solitons. Relaxation of these systems distributes the strain unevenly in the moir{e} superlattice, with the maximum strain energy concentrating at the highest energy stackings. The order parameter distribution shows the formation of aster topological defects at the same sites. In contrast, twisted TMDs host shear solitons at the domain walls, and the order parameter distribution in these systems shows the formation of vortex defects. The strained moir{e} systems also show the emergence of several well-separated flat bands at both the valence and conduction band edges, and we observe a significant reduction in the band gap. The flat bands in these strained moir{e} superlattices provide platforms for studying the Hubbard model on a triangular lattice as well as the ionic Hubbard model on a honeycomb lattice. Furthermore, we study the localization of the wave functions corresponding to these flat bands. The wave functions localize at different stackings compared to twisted TMDs, and our results are in excellent agreement with recent spectroscopic experiments [1].



قيم البحث

اقرأ أيضاً

An important step in understanding the exotic electronic, vibrational, and optical properties of the moir{e} lattices is the inclusion of the effects of structural relaxation of the un-relaxed moir{e} lattices. Here, we propose novel structures for t wisted bilayer of transition metal dichalcogenides (TMDs). For $thetagtrsim 58.4^{circ}$, we show a dramatic reconstruction of the moir{e} lattices, leading to a trimerization of the unfavorable stackings. We show that the development of curved domain walls due to the three-fold symmetry of the stacking energy landscape is responsible for such lattice reconstruction. Furthermore, we show that the lattice reconstruction notably changes the electronic band-structure. This includes the occurrence of flat bands near the edges of the conduction as well as valence bands, with the valence band maximum, in particular, corresponding to localized states enclosed by the trimer. We also find possibilities for other complicated, entropy stabilized, lattice reconstructed structures.
The crystal structure of a material creates a periodic potential that electrons move through giving rise to the electronic band structure of the material. When two-dimensional materials are stacked, the twist angle between the layers becomes an addit ional degree freedom for the resulting heterostructure. As this angle changes, the electronic band structure is modified leading to the possibility of flat bands with localized states and enhanced electronic correlations. In transition metal dichalcogenides, flat bands have been theoretically predicted to occur for long moire wavelengths over a range of twist angles around 0 and 60 degrees giving much wider versatility than magic angle twisted bilayer graphene. Here we show the existence of a flat band in the electronic structure of 3{deg} and 57.5{deg} twisted bilayer WSe2 samples using scanning tunneling spectroscopy. Direct spatial mapping of wavefunctions at the flat band energy have shown that the flat bands are localized differently for 3{deg} and 57.5{deg}, in excellent agreement with first-principle density functional theory calculations.
The electron valley and spin degree of freedom in monolayer transition-metal dichalcogenides can be manipulated in optical and transport measurements performed in magnetic fields. The key parameter for determining the Zeeman splitting, namely the sep arate contribution of the electron and hole g-factor, is inaccessible in most measurements. Here we present an original method that gives access to the respective contribution of the conduction and valence band to the measured Zeeman splitting. It exploits the optical selection rules of exciton complexes, in particular the ones involving inter-valley phonons, avoiding strong renormalization effects that compromise single particle g-factor determination in transport experiments. These studies yield a direct determination of single band g factors. We measure gc1= 0.86, gc2=3.84 for the bottom (top) conduction bands and gv=6.1 for the valence band of monolayer WSe2. These measurements are helpful for quantitative interpretation of optical and transport measurements performed in magnetic fields. In addition the measured g-factors are valuable input parameters for optimizing band structure calculations of these 2D materials.
We report a rectangular charge density wave (CDW) phase in strained 1T-VSe$_2$ thin films synthesized by molecular beam epitaxy on c-sapphire substrates. The observed CDW structure exhibits an unconventional rectangular 4a{times}{sqrt{3a}} periodicit y, as opposed to the previously reported hexagonal $4atimes4a$ structure in bulk crystals and exfoliated thin layered samples. Tunneling spectroscopy shows a strong modulation of the local density of states of the same $4atimessqrt{3}a$ CDW periodicity and an energy gap of $2Delta_{CDW}=(9.1pm0.1)$ meV. The CDW energy gap evolves into a full gap at temperatures below 500 mK, indicating a transition to an insulating phase at ultra-low temperatures. First-principles calculations confirm the stability of both $4atimes4a$ and $4atimessqrt{3}a$ structures arising from soft modes in the phonon dispersion. The unconventional structure becomes preferred in the presence of strain, in agreement with experimental findings.
87 - Yusong Bai , Lin Zhou , Jue Wang 2019
The formation of interfacial moire patterns from angular and/or lattice mismatch has become a powerful approach to engineer a range of quantum phenomena in van der Waals heterostructures. For long-lived and valley-polarized interlayer excitons in tra nsition-metal dichalcogenide (TMDC) heterobilayers, signatures of quantum confinement by the moire landscape have been reported in recent experimental studies. Such moire confinement has offered the exciting possibility to tailor new excitonic systems, such as ordered arrays of zero-dimensional (0D) quantum emitters and their coupling into topological superlattices. A remarkable nature of the moire potential is its dramatic response to strain, where a small uniaxial strain can tune the array of quantum-dot-like 0D traps into parallel stripes of one-dimensional (1D) quantum wires. Here, we present direct evidence for the 1D moire potentials from real space imaging and the corresponding 1D moire excitons from photoluminescence (PL) emission in MoSe2/WSe2 heterobilayers. Whereas the 0D moire excitons display quantum emitter-like sharp PL peaks with circular polarization, the PL emission from 1D moire excitons has linear polarization and two orders of magnitude higher intensity. The results presented here establish strain engineering as a powerful new method to tailor moire potentials as well as their optical and electronic responses on demand.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا