ترغب بنشر مسار تعليمي؟ اضغط هنا

Threshold Ramsey multiplicity for odd cycles

77   0   0.0 ( 0 )
 نشر من قبل David Conlon
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Ramsey number $r(H)$ of a graph $H$ is the minimum $n$ such that any two-coloring of the edges of the complete graph $K_n$ contains a monochromatic copy of $H$. The threshold Ramsey multiplicity $m(H)$ is then the minimum number of monochromatic copies of $H$ taken over all two-edge-colorings of $K_{r(H)}$. The study of this concept was first proposed by Harary and Prins almost fifty years ago. In a companion paper, the authors have shown that there is a positive constant $c$ such that the threshold Ramsey multiplicity for a path or even cycle with $k$ vertices is at least $(ck)^k$, which is tight up to the value of $c$. Here, using different methods, we show that the same result also holds for odd cycles with $k$ vertices.



قيم البحث

اقرأ أيضاً

The Ramsey number $r(H)$ of a graph $H$ is the minimum integer $n$ such that any two-coloring of the edges of the complete graph $K_n$ contains a monochromatic copy of $H$. While this definition only asks for a single monochromatic copy of $H$, it is often the case that every two-edge-coloring of the complete graph on $r(H)$ vertices contains many monochromatic copies of $H$. The minimum number of such copies over all two-colorings of $K_{r(H)}$ will be referred to as the threshold Ramsey multiplicity of $H$. Addressing a problem of Harary and Prins, who were the first to systematically study this quantity, we show that there is a positive constant $c$ such that the threshold Ramsey multiplicity of a path or an even cycle on $k$ vertices is at least $(ck)^k$. This bound is tight up to the constant $c$. We prove a similar result for odd cycles in a companion paper.
For graphs $G$ and $H$, let $G overset{mathrm{rb}}{{longrightarrow}} H$ denote the property that for every proper edge colouring of $G$ there is a rainbow copy of $H$ in $G$. Extending a result of Nenadov, Person, v{S}kori{c} and Steger [J. Combin. T heory Ser. B 124 (2017),1-38], we determine the threshold for $G(n,p) overset{mathrm{rb}}{{longrightarrow}} C_ell$ for cycles $C_ell$ of any given length $ell geq 4$.
A Gallai coloring is a coloring of the edges of a complete graph without rainbow triangles, and a Gallai $k$-coloring is a Gallai coloring that uses at most $k$ colors. For an integer $kgeq 1$, the Gallai-Ramsey number $GR_k(H)$ of a given graph $H$ is the least positive integer $N$ such that every Gallai $k$-coloring of the complete graph $K_N$ contains a monochromatic copy of $H$. Let $C_m$ denote the cycle on $mge4$ vertices and let $Theta_m$ denote the family of graphs obtained from $C_m$ by adding an additional edge joining two non-consecutive vertices. We prove that $GR_k(Theta_{2n+1})=ncdot 2^k+1$ for all $kgeq 1$ and $ngeq 3$. This implies that $GR_k(C_{2n+1})=ncdot 2^k+1$ all $kgeq 1$ and $ngeq 3$. Our result yields a unified proof for the Gallai-Ramsey number of all odd cycles on at least five vertices.
We prove that every family of (not necessarily distinct) odd cycles $O_1, dots, O_{2lceil n/2 rceil-1}$ in the complete graph $K_n$ on $n$ vertices has a rainbow odd cycle (that is, a set of edges from distinct $O_i$s, forming an odd cycle). As part of the proof, we characterize those families of $n$ odd cycles in $K_{n+1}$ that do not have any rainbow odd cycle. We also characterize those families of $n$ cycles in $K_{n+1}$, as well as those of $n$ edge-disjoint nonempty subgraphs of $K_{n+1}$, without any rainbow cycle.
If $G$ is a graph and $vec H$ is an oriented graph, we write $Gto vec H$ to say that every orientation of the edges of $G$ contains $vec H$ as a subdigraph. We consider the case in which $G=G(n,p)$, the binomial random graph. We determine the thresho ld $p_{vec H}=p_{vec H}(n)$ for the property $G(n,p)to vec H$ for the cases in which $vec H$ is an acyclic orientation of a complete graph or of a cycle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا